\(\frac{81}{32}\)
\(\frac{9}{8}\)
\(\frac{1}{4}\)
\(\frac{32}{729}\)
Correct answer is D
ar = \(\frac{2}{9}\) .....(i)
ar\(^3\) = \(\frac{8}{81}\) ......(ii)
\(\frac{ar3}{ar} = \frac{8}{81} \times \frac{9}{2}\)
r\(^2 = \frac{4}{9}\)
r = \(\sqrt{\frac{4}{9}}\)
= \(\frac{2}{3}\)
ar = \(\frac{2}{9}\)
a(\(\frac{2}{3}\)) = \(\frac{2}{9}\)
a = (\(\frac{2}{3}\)) = \(\frac{2}{9}\)
a = \(\frac{2}{9} \times \frac{3}{2}\)
a = \(\frac{1}{3}\)
T\(_r\) = ar\(^5\) = (\(\frac{1}{3}\))(\(\frac{2}{5}\))\(^5\)
= \(\frac{32}{729}\)
-\(\frac{5}{4}\)
-\(\frac{4}{5}\)
\(\frac{4}{5}\)
\(\frac{5}{4}\)
Correct answer is C
PQ = \(\begin {pmatrix} 2 & 3\\ -4 & 1\end {pmatrix}\) = \(\begin {pmatrix} 6 \\ 8 \end {pmatrix}\) = \(\begin {pmatrix} 36 \\ - 16\end {pmatrix}\)
\(\begin {pmatrix} 36 \\ -16 \end {pmatrix} \) = k = \(\begin {pmatrix} 45 \\ -20 \end {pmatrix} \)
k = \(\frac{36}{45}\)
= \(\frac{4}{5}\)
Calculate the distance between points (-2, -5) and (-1, 3)
\(\sqrt{5}\) units
\(\sqrt{17}\) units
\(\sqrt{65}\) units
\(\sqrt{73}\) units
Correct answer is C
distance = \(\sqrt{(3 - (-5)^2 + (-1 - (-2)^2)}\)
= \(\sqrt{8^2 + 1^2}\)
= \(\sqrt{65}\) units
Find the value of x for which 6\(\sqrt{4x^2 + 1}\) = 13x, where x > 0
\(\frac{6}{5}\)
\(\frac{25}{24}\)
\(\frac{24}{25}\)
\(\frac{5}{6}\)
Correct answer is A
\(\sqrt{4x^2 + 1}\) = \(\frac{13x}{6}\)
4x\(^2\) + 1 = \(\frac{169x^2}{36}\)
4 + x\(^2\) = \(\frac{169x^2}{36}\)
cross multiply
169x\(^2\) - 144x\(^2\) = 36
25x\(^2\) = 36
x\(^2\) = \(\frac{36}{25}\)
: x = \(\pm\frac{6}{5}\)
Find the sum of the first 20 terms of the sequence -7-3, 1, ......
620
660
690
1240
Correct answer is A
d = -3 - (-7) = 4
S\(_{20}\) = \(\frac{20}{2}\){2(-7) + (20 - 1) 4}
= 10(- 14 + 76)
= 620