WAEC Mathematics Past Questions & Answers - Page 300

1,496.

The value of sin 210° is

A.

\(-\frac{1}{2}\)

B.

\(-\frac{\sqrt{3}}{2}\)

C.

\(\frac{1}{2}\)

D.

\(\frac{\sqrt{2}}{2}\)

E.

\(\frac{\sqrt{3}}{2}\)

Correct answer is A

sin 210 = - sin (210 - 180) = - sin 30

= \(-\frac{1}{2}\)

1,497.

The value of tan 315°

A.

1

B.

√2/2

C.

0

D.

-1

E.

-√2/2

Correct answer is D

tan 315° = - tan (360 - 315) = - tan 45 = -1

1,498.

If cos θ = 5/13, what is the value of tan \(\theta\) for 0 < θ < 90° ?

A.

13

B.

5

C.

13/5

D.

12/5

E.

5/12

Correct answer is D

\(\cos \theta = \frac{5}{13}\)

\(\implies\) In the right- angled triangle, with an angle \(\theta\), the adjacent side to \(\theta\) = 5 and the hypotenuse = 13.

\(\therefore 13^2 = opp^2 + 5^2\)

\(opp^2 = 169 - 25 = 144 \implies opp = \sqrt{144}\)

= 12.

\(\tan \theta = \frac{opp}{adj} = \frac{12}{5}\) 

1,499.

Sin 60° has the same value as
I. Sin 120°
II. cos 240°
III. -sin 150°
IV. cos 210°
V. sin 240°

A.

I only

B.

II only

C.

IV only

D.

III only

E.

IV and V only

Correct answer is A

In the second quadrant, \(\sin 120 = \sin (180 - 120)\)

= \(\sin 60\)

1,500.

In the diagram above, PQT is an isosceles triangle.|PQ| = |QT|, ∠SRQ = 75°, ∠QPT = 25° and PQR is straight line. Find ∠RST

A.

20o

B.

50o

C.

55o

D.

70o

E.

75o

Correct answer is C

< PTQ = 25° (base angles of an isos. triangle)

\(\therefore\) < PQT = 180° - (25° + 25°) = 130° (sum of angles in triangle PQT)

\(\therefore\) < RST = 130° - 75° = 55° (exterior angle = sum of 2 opp. interior angles)