In the diagram above PQT is a tangent to the circle QRS a...
In the diagram above PQT is a tangent to the circle QRS at Q. Angle QTR = 48° and ∠QRT = 95°. Find ∠QRT
48o
45o
37o
32o
30o
Correct answer is C
∠RQT = 180° - (95° + 48°) = 73°
∠OQR = 90° - 37° = 53°
∠QOR = 180° - (53° + 53°) = 74°
QSR = 74°/2 = 37°
Simplify; \(\frac{2}{1 - x} - \frac{1}{x}\)...
If \(\sqrt{72} + \sqrt{32} - 3 \sqrt{18} = x \sqrt{8}\), Find the value of x...
Multiply (x2 - 3x + 1) by (x - a)...
If y varies inversely as x and x = 3 when y =4. Find the value of x when y = 12 ...
Solve for x in the equation; \(\frac{1}{x} + \frac{2}{3x} = \frac{1}{3}\)...
Rationalize \(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)...
If \(\sin\theta = \frac{12}{13}\), find the value of \(1 + \cos\theta\)...