WAEC Mathematics Past Questions & Answers - Page 236

1,176.

Given that \(81\times 2^{2n-2} = K, find \sqrt{K}\)

A.

\(4.5\times 2^{n}\)

B.

\(4.5\times 2^{2n}\)

C.

\(9\times 2^{n-1}\)

D.

\(9\times 2^{2n}\)

Correct answer is C

\(K = 81 \times 2^{2n - 2}\)

\(\sqrt{K} = \sqrt{81 \times 2^{2n - 2}}\)

= \(9 \times 2^{n - 1}\)

1,177.

If \(y = \sqrt{ax-b}\) express x in terms of y, a and b

A.

\(x = \frac{y^2-b}{a}\)

B.

\(x = \frac{y+b}{a}\)

C.

\(x = \frac{y-b}{a}\)

D.

\(x = \frac{y^2 + b}{a}\)

Correct answer is D

\(y = \sqrt{ax-b}\)

\(y^2 = ax-b\)

\(y^2 +b = ax\)

\(x = \frac{y^2 + b}{a}\)

1,178.

Simplify \(\frac{2-18m^2}{1+3m}\)

A.

\(2(1+3m)\)

B.

\(2(1+3m^2)\)

C.

\(2(1-3m)\)

D.

\(2(1-3m^2)\)

Correct answer is C

\(\frac{2-18m^2}{1+3m}=\frac{2(1-(3m)^2)}{1+3m}\)

\(frac{2(1-(3m)(1+3m)}{1+3m}=2(1-3m)\)

1,179.

Given that m = -3 and n = 2 find the value of \(\frac{3n^2 - 2m^3}{m}\)

A.

-22

B.

-14

C.

14

D.

22

Correct answer is A

Given that m = -3, n = 2, the value of
\(\frac{3n^2 - 2n^3}{m}\\
\frac{3(2)^2 -2(-3)^2}{-3}= \frac{12+54}{-3}=-22\)

1,180.

In the diagram, POR is a circle with center O. ∠QPR = 50°, ∠PQO = 30° and ∠ORP = m. Find m.

A.

20o

B.

25o

C.

30o

D.

50o

Correct answer is A

< QOR = 50° x 2 = 100°

Reflex < QOR = 360° - 100° = 260°

\(\therefore\) 30° + 50° + 260° + m = (4 - 2) x 180°

340° + m = 360°

m = 360° - 340° = 20°