WAEC Mathematics Past Questions & Answers - Page 216

1,076.

Given that sin \(P = \frac{5}{13}\), where p is acute, find the value of cos p - tan p

A.

\(\frac{79}{156}\)

B.

\(\frac{85}{156}\)

C.

\(\frac{7}{13}\)

D.

\(\frac{8}{1}\)

Correct answer is A

If \(sin P = \frac{5}{13}\) from right angled triangle from pythagoras theorem
\(BC^2 = 13^2 - 5^2\\
=169-25\\
BC = \sqrt{144} = 12\\
∴ cos P - tan P = \frac{12}{13} - \frac{5}{12}\\
=\frac{79}{156}\)

1,077.

The bearing S40°E is the same as

A.

040o

B.

050o

C.

130o

D.

140o

Correct answer is D

= 90° + 50°

= 140°

1,078.

If 2x : (x +1) = 3:2, what is the value of x?

A.

\(\frac{1}{2}\)

B.

1

C.

\(1\frac{1}{2}\)

D.

3

Correct answer is D

\(2x : (x + 1) = 3:2\\
\frac{2x}{x+1}=\frac{3}{2}\\
∴ 4x = 3x + 3 x =3\)

1,079.

If \(y \propto \frac{1}{\sqrt{x}}\) and x = 16 when y = 2, find x when y = 24

A.

\(\frac{1}{9}\)

B.

\(\frac{1}{6}\)

C.

\(\frac{1}{3}\)

D.

\(\frac{2}{3}\)

Correct answer is A

\(y \propto \frac{1}{\sqrt{x}}\)

\(y = \frac{k}{\sqrt{x}}\)

When x = 16, y = 2.

\(2 = \frac{k}{\sqrt{16}} \implies 2 = \frac{k}{4}\)

\(k = 8\)

\(y = \frac{8}{\sqrt{x}}\)

When y = 24,

\(24 = \frac{8}{\sqrt{x}}\)

\(\sqrt{x} = \frac{8}{24} = \frac{1}{3}\)

\(\therefore x = (\frac{1}{3})^2\)

\(x = \frac{1}{9}\)

1,080.

Subtract (-y + 3x + 5z) from (4y - x - 2z)

A.

5y - 4x - 7z

B.

3y + 2x + 3z

C.

-5y + 4x + 7z

D.

2x - 5y + 3z

Correct answer is A

(4y - x - 2z) - (-y + 3x + 5z)

= 4y + y - x - 3x - 2z - 5z

= 5y - 4x - 7z