-2
-1
\(-\frac{1}{2}\)
1
Correct answer is D
\(\frac{x^2 + x - 2}{2x^2 + x - 3}\)
= \(\frac{x^2 + 2x - x - 2}{2x^2 + 3x - 2x - 3}\)
= \(\frac{x(x + 2) - 1(x + 2)}{x(2x + 3) - 1(2x + 3)}\)
= \(\frac{(x - 1)(x + 2)}{(x - 1)(2x + 3)}\)
= \(\frac{x + 2}{2x + 3}\)
At x = -1,
= \(\frac{-1 + 2}{2(-1) + 3}\)
= \(\frac{1}{1}\)
= 1
Find y, if \(\begin{pmatrix}5 & -6 \\2 & -7\end{pmatrix}\begin{pmatrix}x \\ y \end...
Evaluate \(\frac{21}{9}\) to 3 significant figures...
In the diagram |XY| = 12cm, |XZ| = 9cm, |ZN| = 3cm and ZY||NM, calculate |MY| ...
Evaluate \(\log_{10} 25 + \log_{10} 32 - \log_{10} 8\)...
Find the gradient of the line joining the points (2, -3) and 2, 5) ...
What must be added to (2x - 3y) to get (x - 2y)? ...
Write down the number 0.0052048 correct to three significant figures...