3
9
27
81
Correct answer is B
9∗3n+1−3n+23n+1−3n
= 3n∗3n∗31∗−32∗323n∗31−3n
= 3n(32∗31)3n(31−1)
= 27−93−1
= 182
= 9
If log10(3x+1)+log104=log10(9x+2), find the value of x
13
1
2
3
Correct answer is C
log10(3x+1)+log104=log10(9x+2)
log104(3x+1)=log10(9x+2)
4(3x+1) = 9x + 2
12x -4 = 9x + 2
12x - 9x = 2 + 4
3x = 6
x = 2
5√36
3√156
5√612
5√312
Correct answer is C
(3√6√5+√543√5)−1
= √5(3√5)3√6+3√6
= 3∗56√6=52√6
= 5∗2√62√6+2√6=10√64∗6
= 5√612
16
8
4
2
Correct answer is D
x∆y = √x+y−xy4
4∆3 = √4+3−4∗34
= √4+3−3
= √4
= 2.
The table shows the distribution of marks obtained by some students in a test
Marks | 0-9 | 10-19 | 20-29 | 30-39 | 40-49 |
Frequency | 4 | 12 | 16 | 6 | 2 |
Find the modal class mark.
4.5
14.5
24.5
34.5
Correct answer is C
Modal class 20 - 29
Modal class mark = 20+292
= 492
= 24.5