WAEC Further Mathematics Past Questions & Answers - Page 17

81.

Simplify \(\frac{9*3^{n+1} - 3^{n+2}}{3^{n+1} - 3^{n}}\)

A.

3

B.

9

C.

27

D.

81

Correct answer is B

\(\frac{9*3^{n+1} - 3^{n+2}}{3^{n+1} - 3^{n}}\)

= \(\frac{3^n * 3^n * 3^1 * - 3^2 * 3^2}{3^n * 3^1 - 3^n}\)

= \(\frac{3^n (3^2 * 3^1)}{3^n (3^1 - 1)}\)

= \(\frac{27-9}{3-1}\)

= \(\frac{18}{2}\)

= 9

82.

If \(log_{10}(3x+1) + log_{10}4 = log_{10}(9x+2)\), find the value of x 

A.

\(\frac{1}{3}\)

B.

1

C.

2

D.

3

Correct answer is C

\(log_{10}(3x+1) + log_{10}4 = log_{10}(9x+2)\)

\(log_{10}4(3x+1) = log_{10}(9x+2)\)

4(3x+1) = 9x + 2

12x -4 = 9x + 2

12x - 9x = 2 + 4

3x = 6

x = 2

83.

(\(\frac{3√6}{√5} + \frac{√54}{3√5}\))\(^{-1}\)

A.

\(\frac{5√3}{6}\)

B.

\(\frac{3√15}{6}\)

C.

\(\frac{5√6}{12}\)

D.

\(\frac{5√3}{12}\)

Correct answer is C

(\(\frac{3√6}{√5} + \frac{√54}{3√5}\))\(^{-1}\)

= \(\frac{√5(3√5)}{3√6 + 3√6}\)

= \(\frac{3*5}{6√6} = \frac{5}{2√6}\)

= \(\frac{5*2√6}{2√6+2√6} = \frac{10√6}{4*6}\)

= \(\frac{5√6}{12}\)

84.

A binary operation ∆ is defined on the set of real numbers R, by x∆y = \(\sqrt{x+y - \frac{xy}{4}}\), where x, yER. Find the value of 4∆3

A.

16

B.

8

C.

4

D.

2

Correct answer is D

x∆y = \(\sqrt{x+y - \frac{xy}{4}}\)

4∆3 = \(\sqrt{4+3 - \frac{4*3}{4}}\) 

= \(\sqrt{4+3-3}\)

= \(\sqrt{4}\)

= 2.

85.

The table shows the distribution of marks obtained by some students in a test

Marks 0-9 10-19 20-29 30-39 40-49
Frequency 4 12 16 6 2

 

Find the modal class mark.

A.

4.5

B.

14.5

C.

24.5

D.

34.5

Correct answer is C

Modal class 20 - 29

Modal class mark = \(\frac{20+29}{2}\)

= \(\frac{49}{2}\)

= 24.5