WAEC Further Mathematics Past Questions & Answers - Page 141

701.

Given that \(f(x) = 5x^{2} - 4x + 3\), find the coordinates of the point where the gradient is 6.

A.

(4,1)

B.

(4,-2)

C.

(1,4)

D.

(1,-2)

Correct answer is C

\(f(x) = 5x^{2} - 4x + 3\)

\(f'(x) = 10x - 4 = 6 \implies 10x = 10; x=1\)

When x = 1, f(x) = y = \(5(1^{2}) - 4(1) + 3 = 4\)

The coordinates are (1,4)

702.

A circle with centre (4,5) passes through the y-intercept of the line 5x - 2y + 6 = 0. Find its equation.

A.

\(x^{2} + y^{2} + 8x - 10y + 21 = 0\)

B.

\(x^{2} + y^{2} + 8x - 10y - 21 = 0\)

C.

\(x^{2} + y^{2} - 8x - 10y - 21 = 0\)

D.

\(x^{2} + y^{2} - 8x - 10y + 21 = 0\)

Correct answer is D

On the y-intercept, x=0. At this point, y = 5(0) - 2y = -6; y = 3, so the y- intercept has coordinates (0,3).

The equation of the circle is given as \((x-a)^{2} + (y-b)^{2} = r^{2}\), where (a,b) is the centre and r is the radius.

The radius of the circle through the y- intercept = \(\sqrt{(4-0)^{2} + (5-3)^{2}} = \sqrt{20}\)

The equation of the circle is \((x-4)^{2} + (y-5)^{2} = 20\); expanding, we have

\(x^{2} + y^{2} + 8x - 10y + 21 = 0\)

703.

Given that \(\sin x = \frac{5}{13}\) and \(\sin y = \frac{8}{17}\), where x and y are acute, find \(\cos(x+y)\).

A.

\(\frac{130}{221}\)

B.

\(\frac{140}{221}\)

C.

\(\frac{140}{204}\)

D.

\(\frac{220}{23}\)

Correct answer is B

\(\cos(x+y) = \cos x\cos y - \sin x\sin y\)

Given \(\sin\) of an angle implies we have the value of the opposite and hypotenuse of the right-angled triangle. We find the adjacent side using Pythagoras' theorem.

\(Adj^{2} = Hyp^{2} - Opp^{2}\)

For triangle with angle x, \(adj = \sqrt{13^{2} - 5^{2}} = \sqrt{144} = 12\)

For triangle with angle y, \(adj = \sqrt{17^{2} - 8^{2}} = \sqrt{225} = 15\)

\(\therefore \cos x = \frac{12}{13}; \cos y = \frac{15}{17}\)

\(\cos(x+y) = (\frac{12}{13}\times\frac{15}{17}) - (\frac{5}{13}\times\frac{8}{17}) = \frac{180}{221} - \frac{40}{221}\)

= \(\frac{140}{221}\)

704.

If \(B = \begin{pmatrix}  2 & 5  \\  1 & 3  \end{pmatrix}\), find \(B^{-1}\).

A.

\(A = \begin{pmatrix} -3 & -5 \\ 1 & 2 \end{pmatrix}\)

B.

\(A = \begin{pmatrix} 3 & -5 \\ 1 & 2 \end{pmatrix}\)

C.

\(A = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}\)

D.

\(A = \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}\)

Correct answer is C

\(B.B^{-1} = 1\), let \(B^{-1} = \begin{pmatrix}  a & b  \\  c & d  \end{pmatrix}\)

\(\begin{pmatrix}  2 & 5  \\  1 & 3  \end{pmatrix}\)\(\begin{pmatrix}  a & b  \\  c & d  \end{pmatrix}\) = \(\begin{pmatrix}  1 & 0  \\  0 & 1  \end{pmatrix}\)

Multiplying \(B \times B^{-1}\), we have the following equations:

\(2a+5c = 1......... (1)\); \(a+3c = 0 ........(2)\)

\(2b+5d = 0 ..........(3)\); \(b+3d = 1..........(4)\)

Solving the equations simultaneously, we have

\(a = 3; b = -5; c = -1; d = 2 \implies B^{-1} = \begin{pmatrix}  3 & -5  \\  -1 & 2  \end{pmatrix}\)

705.

\(\alpha\) and \(\beta\) are the roots of the equation \(2x^{2} - 3x + 4 = 0\). Find \(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\)

A.

\(\frac{-9}{8}\)

B.

\(\frac{-7}{8}\)

C.

\(\frac{7}{8}\)

D.

\(\frac{9}{8}\)

Correct answer is B

\(\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}\)

\(\alpha + \beta = \frac{-b}{a}\); \(\alpha\beta = \frac{c}{a}\)

\(\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2(\alpha\beta)\)

From the equation, a = 2, b = -3, c =4

\(\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}\)

\(\alpha\beta = \frac{4}{2} = 2\)

\(\alpha^{2} + \beta^{2} = (\frac{3}{2})^{2} - 2(2)) = \frac{9}{4} - 4 = \frac{-7}{4}\)

\(\implies \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{-7}{4}}{2} = \frac{-7}{8}\)