Processing math: 29%

WAEC Further Mathematics Past Questions & Answers - Page 141

701.

A circle with centre (4,5) passes through the y-intercept of the line 5x - 2y + 6 = 0. Find its equation.

A.

x2+y2+8x10y+21=0

B.

x2+y2+8x10y21=0

C.

x2+y28x10y21=0

D.

x2+y28x10y+21=0

Correct answer is D

On the y-intercept, x=0. At this point, y = 5(0) - 2y = -6; y = 3, so the y- intercept has coordinates (0,3).

The equation of the circle is given as (xa)2+(yb)2=r2, where (a,b) is the centre and r is the radius.

The radius of the circle through the y- intercept = (40)2+(53)2=20

The equation of the circle is (x4)2+(y5)2=20; expanding, we have

x2+y2+8x10y+21=0

702.

Given that sinx=513 and siny=817, where x and y are acute, find cos(x+y).

A.

130221

B.

140221

C.

140204

D.

22023

Correct answer is B

cos(x+y)=cosxcosysinxsiny

Given sin of an angle implies we have the value of the opposite and hypotenuse of the right-angled triangle. We find the adjacent side using Pythagoras' theorem.

Adj2=Hyp2Opp2

For triangle with angle x, adj=13252=144=12

For triangle with angle y, adj=17282=225=15

\cos(x+y) = (\frac{12}{13}\times\frac{15}{17}) - (\frac{5}{13}\times\frac{8}{17}) = \frac{180}{221} - \frac{40}{221}

= \frac{140}{221}

703.

If B = \begin{pmatrix}  2 & 5  \\  1 & 3  \end{pmatrix}, find B^{-1}.

A.

A = \begin{pmatrix} -3 & -5 \\ 1 & 2 \end{pmatrix}

B.

A = \begin{pmatrix} 3 & -5 \\ 1 & 2 \end{pmatrix}

C.

A = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}

D.

A = \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}

Correct answer is C

B.B^{-1} = 1, let B^{-1} = \begin{pmatrix}  a & b  \\  c & d  \end{pmatrix}

\begin{pmatrix}  2 & 5  \\  1 & 3  \end{pmatrix}\begin{pmatrix}  a & b  \\  c & d  \end{pmatrix}\begin{pmatrix}  1 & 0  \\  0 & 1  \end{pmatrix}

Multiplying B \times B^{-1}, we have the following equations:

2a+5c = 1......... (1); a+3c = 0 ........(2)

2b+5d = 0 ..........(3); b+3d = 1..........(4)

Solving the equations simultaneously, we have

a = 3; b = -5; c = -1; d = 2 \implies B^{-1} = \begin{pmatrix}  3 & -5  \\  -1 & 2  \end{pmatrix}

704.

\alpha and \beta are the roots of the equation 2x^{2} - 3x + 4 = 0. Find \frac{\alpha}{\beta} + \frac{\beta}{\alpha}

A.

\frac{-9}{8}

B.

\frac{-7}{8}

C.

\frac{7}{8}

D.

\frac{9}{8}

Correct answer is B

\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}

\alpha + \beta = \frac{-b}{a}; \alpha\beta = \frac{c}{a}

\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2(\alpha\beta)

From the equation, a = 2, b = -3, c =4

\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}

\alpha\beta = \frac{4}{2} = 2

\alpha^{2} + \beta^{2} = (\frac{3}{2})^{2} - 2(2)) = \frac{9}{4} - 4 = \frac{-7}{4}

\implies \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{-7}{4}}{2} = \frac{-7}{8}

705.

\alpha and \beta are the roots of the equation 2x^{2} - 3x + 4 = 0. Find \alpha + \beta.\alpha and \beta are the roots of the equation 2x^{2} - 3x + 4 = 0. Find \alpha + \beta.

A.

-2

B.

-\frac{3}{2}

C.

\frac{3}{2}

D.

2

Correct answer is C

\alpha + \beta = \frac{-b}{a}

From the equation, a = 2, b = -3 and c = 4

\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}