WAEC Further Mathematics Past Questions & Answers - Page 139

691.

Given that \( a = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\) and \(b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}\), evaluate \((2a - \frac{1}{4}b)\)

A.

\(\begin{pmatrix} \frac{17}{4} \\ 7 \end{pmatrix}\)

B.

\(\begin{pmatrix} \frac{17}{4} \\ 5 \end{pmatrix}\)

C.

\(\begin{pmatrix} \frac{17}{4} \\ 3 \end{pmatrix}\)

D.

\(\begin{pmatrix} \frac{17}{4} \\ 2 \end{pmatrix}\)

Correct answer is B

\(a = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\); \(b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}\)

\(\implies 2 \times a = \begin{pmatrix} 4 \\ 6 \end{pmatrix}\) and \(\frac{1}{4} \times b = \begin{pmatrix} -\frac{1}{4} \\ 1 \end{pmatrix}\)

\(\therefore 2a - \frac{1}{4}b = \begin{pmatrix} 4 - \frac{-1}{4} \\ 6 - 1 \end{pmatrix}\)

= \(\begin{pmatrix} \frac{17}{4} \\ 5 \end{pmatrix}\)

692.

A fair die is tossed twice. What is its smple size?

A.

6

B.

12

C.

36

D.

48

Correct answer is C

Sample size = 6 x 6 = 36.

693.

In a class of 10 boys and 15 girls, the average score in a Biology test is 90. If the average score for the girls is x, find the average score for the boys in terms of x.

A.

\(200 - \frac{2x}{3}\)

B.

\(225 - \frac{3x}{2}\)

C.

\(250 - 2x\)

D.

\(250 - 3x\)

Correct answer is B

Let A and B be the sum for the boys and girls respectively.

\(\frac{A + B}{10 + 15} = \frac{A + B}{25} = 90\)

\(\implies A + B = 90 \times 25 = 2250\)

Given the average for girls = x, we have \(\frac{B}{15} = x \implies B = 15x)

\(\therefore A + 15x = 2250; A = 2250 - 15x \implies\) average score for boys \(= \frac{2250 - 15x}{10}\)

= \(225 - \frac{3x}{2}\) 

694.

A curve is given by \(y = 5 - x - 2x^{2}\). Find the equation of its line of symmetry.

A.

\(x = \frac{-41}{8}\)

B.

\(x = \frac{-1}{4}\)

C.

\(x = \frac{1}{4}\)

D.

\(x = \frac{41}{8}\)

Correct answer is B

The line of symmetry of the curve is at the minimum point of the curve (ie y' = 0)

\(\frac{ \mathrm d}{ \mathrm d x} \left ( 5-x-2x^{2} \right)\) = -1 - 4x

If y' = 0, we have \(-1 - 4x = 0 \implies 4x = -1\)

\(x = \frac{-1}{4}\)

695.

Differentiate \(\frac{5x^{3} + x^{2}}{x}, x\neq 0\) with respect to x.

A.

10x+1

B.

10x+2

C.

x(15x+1)

D.

x(15x+2)

Correct answer is A

This can be done either by using quotient rule or by direct division of the equation, then differentiate.

\(\frac{\mathrm d}{\mathrm d x} \left( \frac{5x^{3} + x^{2}}{x} \right)\)     

= \(\frac{\mathrm d}{\mathrm d x} \left ( \frac{5x^{3}}{x} + \frac{x^{2}}{x} \right)\)

= \(\frac{\mathrm d}{\mathrm d x} \left ( 5x^{2} + x \right)\)

= \(10x + 1\)