The midpoint of M(4, -1) and N(x, y) is P(3, -4). Find the coordinates of N.
(2, -3)
(2, -7)
(-1, -3)
(-10, -7)
Correct answer is B
Given \(M(4, -1)\) and \(N(x, y)\) with midpoint \(P(3, -4)\).
\(\implies \frac{4 + x}{2} = 3; \frac{-1 + y}{2} = -4\)
\(\therefore x = 2; y = -7\)
N = (2, -7)
Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y.
-2
0
1
2
Correct answer is B
To find the maximum value, we can use the second derivative test where, given \(f(x)\), the second derivative < 0, makes it a maximum value.
\(x(x + 1)^{2} = x(x^{2} + 2x + 1) = x^{3} + 2x^{2} + x\)
\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} + 4x + 1 = 0\)
Solving, we have \( x = \frac{-1}{3}\) or \(-1\).
\(\frac{\mathrm d^{2} y}{\mathrm d x^{2}} = 6x + 4\)
When \(x = \frac{-1}{3}, \frac{\mathrm d^{2} y}{\mathrm d x^{2}} = 2 > 0\)
When \(x = -1, \frac{\mathrm d^{2} y}{\mathrm d x^{2}} = -2 < 0\)
At maximum value of x being -1, \(y = -1(-1 + 1)^{2} = 0\)
Find the equation to the circle \(x^{2} + y^{2} - 4x - 2y = 0\) at the point (1, 3).
2y - x -5 = 0
2y + x - 5 = 0
2y + x + 5 = 0
2y - x + 5 = 0
Correct answer is A
We are given the equation \(x^{2} + y^{2} - 4x - 2y = 0\)
\(y = x^{2} + y^{2} - 4x - 2y \)
Using the method of implicit differentiation,
\(\frac{\mathrm d y}{\mathrm d x} = 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x}\)
For the tangent, \(\frac{\mathrm d y}{\mathrm d x} = 0\),
\(\therefore 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x} = 0\)
\((2y - 2)\frac{\mathrm d y}{\mathrm d x} = 4 - 2x \implies \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2x}{2y - 2}\)
At (1, 3), \(\frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2(1)}{2(3) - 2} = \frac{2}{4} = \frac{1}{2}\)
Equation: \(\frac{y - 3}{x - 1} = \frac{1}{2} \implies 2y - 6 = x - 1\)
= \(2y - x - 6 + 1 = 2y - x - 5 = 0\)
Express \(\frac{13}{4}\pi\) radians in degrees.
495°
225°
585°
135°
Correct answer is C
\(180° = \pi radian\)
\(\frac{13}{4}\pi = \frac{13}{4} \times 180° = 585°\)
-2
-1
1
2
Correct answer is B
\(\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13\)
\(\begin{vmatrix} 2 & x \\ 3 & 5 \end{vmatrix} = (2 \times 5) - (3 \times x) = 13\)
\(10 - 3x = 13 \implies -3x = 3; x = -1\)