Processing math: 53%

WAEC Further Mathematics Past Questions & Answers - Page 132

656.

Given that y=x(x+1)2, calculate the maximum value of y.

A.

-2

B.

0

C.

1

D.

2

Correct answer is B

To find the maximum value, we can use the second derivative test where, given f(x), the second derivative < 0, makes it a maximum value.

x(x+1)2=x(x2+2x+1)=x3+2x2+x

dydx=3x2+4x+1=0

Solving, we have x=13 or 1.

d2ydx2=6x+4

When x=13,d2ydx2=2>0

When x=1,d2ydx2=2<0

At maximum value of x being -1, y=1(1+1)2=0

657.

Find the equation to the circle x2+y24x2y=0 at the point (1, 3).

A.

2y - x -5 = 0

B.

2y + x - 5 = 0

C.

2y + x + 5 = 0

D.

2y - x + 5 = 0

Correct answer is A

We are given the equation x2+y24x2y=0

y=x2+y24x2y

Using the method of implicit differentiation, 

dydx=2x+2ydydx42dydx

For the tangent, dydx=0,

(2y - 2)\frac{\mathrm d y}{\mathrm d x} = 4 - 2x \implies \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2x}{2y - 2}

At (1, 3), \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2(1)}{2(3) - 2} = \frac{2}{4} = \frac{1}{2}

Equation: \frac{y - 3}{x - 1} = \frac{1}{2} \implies 2y - 6 = x - 1

= 2y - x - 6 + 1 = 2y - x - 5 = 0

658.

Express \frac{13}{4}\pi radians in degrees.

A.

495°

B.

225°

C.

585°

D.

135°

Correct answer is C

180° = \pi radian

\frac{13}{4}\pi = \frac{13}{4} \times 180° = 585°

659.

If the determinant of the matrix \begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13, find the value of x.

A.

-2

B.

-1

C.

1

D.

2

Correct answer is B

\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13

\begin{vmatrix} 2 & x \\ 3 & 5 \end{vmatrix} = (2 \times 5) - (3 \times x) = 13

10 - 3x = 13 \implies -3x = 3; x = -1

660.

In how many ways can the letters of the word 'ELECTIVE' be arranged?

A.

336

B.

1680

C.

6720

D.

20160

Correct answer is C

The word has 8 letters with one letter repeated 3 times, therefore we have:

\frac{8!}{3!} = 6720 ways.