Processing math: 33%

WAEC Further Mathematics Past Questions & Answers - Page 127

631.

The remainder when x32x+m is divided by x1 is equal to the remainder when 2x3+xm is divided by 2x+1. Find the value of m.

A.

78

B.

38

C.

18

D.

58

Correct answer is C

The remainder theorem states that if f(x) is divided by (x - a), the remainder is f(a). 

f(x)=x32x+m divided by (x - 1), so that a = 1.

Remainder = f(1)=132(1)+m=1+m

f(x)=2x3+xm divided by (2x + 1), so that a = 12

f(12)=2(123)+(12)m=34m

m1=34m, collecting like terms,

2m=14

632.

If the solution set of x^{2} + kx - 5 = 0 is (-1, 5), find the value of k.

A.

-6

B.

-4

C.

4

D.

5

Correct answer is B

Given x = (-1, 5) for the equation x^{2} + kx - 5 = 0

x = -1 \implies x + 1 = 0; x = 5 \implies x - 5 = 0

(x + 1)(x - 5) = 0, expanding,

x^{2} - 5x + x - 5 = 0   \therefore  x^{2} - 4x -  5 = 0

\therefore k = -4.

633.

Factorize completely: x^{2} + x^{2}y + 3x - 10y + 3xy - 10.

A.

(x + 2)(x + 5)(y + 1)

B.

(x + 2)(x - 5)(y + 1)

C.

(x - 2)(x + 5)(y + 1)

D.

(x - 2)(x - 5)(y + 1)

Correct answer is C

x^{2} + x^{2}y + 3x - 10y + 3xy -10

= x^{2} + x^{2}y + 3x + 3xy - 10y - 10  = x^{2}(1 + y) + 3x(1 + y) - 10(y + 1)

= (x^{2} + 3x - 10)(y + 1)

= (x^{2} + 3x - 10) = x^{2} - 2x + 5x - 10

= x(x - 2) + 5(x - 2) = (x - 2)(x +5)

\therefore x^{2} + x^{2}y + 3x - 10y + 3xy -10 = (x - 2)(x + 5)(y + 1).

634.

If y = 4x - 1, list the range of the domain {-2 \leq x \leq 2}, where x is an integer.

A.

{-9, -1, 2,3, 4}

B.

{-9, -2, 0, 1, 7}

C.

{-5, -4, -3, -2}

D.

{-9, -5, -1, 3, 7}

Correct answer is D

The elements of x are {-2, -1, 0, 1, 2}

y = 4x - 1 = 4(-2) - 1 = -9; 4(-1) - 1 = -5; 4(0) - 1 = -1; 4(1) - 1 = 3; 4(2) - 1 = 7.

The range of x is {-9, -5, -1, 3 7}.

635.

If f(x) = \frac{4}{x} - 1, x \neq 0, find f^{-1}(7).

A.

\frac{-3}{7}

B.

0

C.

\frac{1}{2}

D.

4

Correct answer is C

f(x) = \frac{4}{x} - 1. Let y = f(x)

y = \frac{4 - x}{x}  \implies xy + x = 4

x(y + 1) = 4  \therefore  x = \frac{4}{y + 1}

f^{-1}(7) = \frac{4}{7 + 1} = \frac{1}{2}