Processing math: 15%

WAEC Further Mathematics Past Questions & Answers - Page 120

596.

If log3x=log93, find the value of x.

A.

32

B.

312

C.

313

D.

213

Correct answer is B

log3x=log93log3x=log9912=12log99

log3x=12

597.

Solve: 4(2^{x^2}) = 8^{x}

A.

(1, 2)

B.

(1, -2)

C.

(-1, 2)

D.

(-1, -2)

Correct answer is A

4(2^{x^2}) = 8^{x}  \equiv (2^{2})(2^{x^2}) = (2^{3})^{x}

\implies 2^{2 + x^{2}} = 2^{3x}

Comparing bases, we have

2 + x^{2} = 3x \implies x^{2} - 3x + 2 = 0

x^{2} - 2x - x + 2 = 0

x(x - 2) - 1(x - 2) = 0

(x - 1) = 0 or (x - 2) = 0

x = \text{1 or 2}

598.

Solve: 2\cos x - 1 = 0

A.

(\frac{2\pi}{3}, \frac{4\pi}{3})

B.

(\frac{\pi}{6}, \frac{5\pi}{6})

C.

(\frac{\pi}{5}, \frac{2\pi}{5})

D.

(\frac{\pi}{3}, \frac{5\pi}{3})

Correct answer is D

2\cos x - 1 = 0 \implies 2\cos x = 1

\cos x = \frac{1}{2}

x = \cos^{-1} (\frac{1}{2})

= \frac{\pi}{3} = \frac{5\pi}{3}

599.

Simplify \frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}}.

A.

14(2\sqrt{2} + 6\sqrt{5} - 4\sqrt{10})

B.

\frac{1}{14}(2 - 3\sqrt{2} - 4\sqrt{5} - 6\sqrt{10})

C.

\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 6\sqrt{10} - 2)

D.

14(2 + 3\sqrt{2} - 6\sqrt{5} + 4\sqrt{10})

Correct answer is C

\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}} = (\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}})(\frac{2 - 3\sqrt{2}}{2 - 3\sqrt{2}})

= \frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{4 - 6\sqrt{2} + 6\sqrt{2} - 18}

= \frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{-14}

= \frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 2 - 6\sqrt{10}) (dividing through with the minus sign)

600.

A ball falls from a height of 18m above the ground. Find the speed with which the ball hits the ground. [g = 10ms^{-2}]

A.

9ms^{-1}

B.

9.49ms^{-1}

C.

13.42ms^{-1}

D.

18.97ms^{-1}

Correct answer is D

Due to conservation of energy, K.E = P.E

\frac{1}{2}mv^{2} = mgh

\implies m \times 10 \times 18 = \frac{1}{2}mv^{2}

v^{2} = 2 \times 10 \times 18 = 360

v = \sqrt{360} = 18.97ms^{-1}