WAEC Further Mathematics Past Questions & Answers - Page 114

566.

If \(2\sin^{2} \theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find the value of \(\theta\). 

A.

90°

B.

60°

C.

45°

D.

30°

Correct answer is B

\(2\sin^{2} \theta = 1 + \cos \theta\)

\(2 ( 1 - \cos^{2} \theta) = 1 + \cos \theta\)

\(2 - 2\cos^{2} \theta = 1 + \cos \theta\)

\(0 = 1 - 2 + \cos \theta + 2\cos^{2} \theta\)

\(2\cos^{2} \theta + \cos \theta - 1 = 0\)

Factorizing, we have

\((\cos \theta + 1)(2\cos \theta - 1) = 0\)

Note: In the range, \(0° \leq \theta \leq 90°\), all trig functions are positive, so we consider

\(2\cos \theta = 1 \implies \cos \theta = \frac{1}{2}\)

\(\theta = 60°\).

567.

Simplify: \(^{n}C_{r} ÷ ^{n}C_{r-1}\)

A.

\(\frac{n(n-r)}{r}\)

B.

\(\frac{n}{r(n-r)}\)

C.

\(\frac{1}{r(n-r)}\)

D.

\(\frac{n+1-r}{r}\)

Correct answer is D

\(^{n}C_{r} = \frac{n!}{(n-r)! r!}\)

\(^{n}C_{r - 1} = \frac{n!}{(n - (r - 1))! (r - 1)!}\)

\(^{n}C_{r} ÷ ^{n}C_{r - 1} = \frac{n!}{(n - r)! r!} ÷ \frac{n!}{(n-(r-1))!(r-1)!}\)

= \(\frac{n!}{(n-r)! r!} \times \frac{(n-(r-1)! (r-1)!}{n!}\)

= \(\frac{(n + 1 - r)! (r - 1)!}{(n - r)! r!}\)

= \(\frac{(n+1-r)(n-r)! (r-1)!}{(n-r)! r (r - 1)!}\)

= \(\frac{n + 1 - r}{r}\)

568.

In calculating the mean of 8 numbers, a boy mistakenly used 17 instead of 25 as one of the numbers. If he obtained 20 as the mean, find the correct mean. 

A.

24

B.

23

C.

21

D.

19

Correct answer is C

Let the sum of the 8 numbers = y.

\(\frac{y}{8} = 20 \implies y = 20 \times 8 = 160\)

\(160 - 17 = 143 (\text{the sum of the other 7 numbers})\)

\(mean = \frac{143 + 25}{8} = \frac{168}{8}\)

= 21

569.

Four fair coins are tossed once. Calculate the probability of having equal heads and tails.

A.

\(\frac{1}{4}\)

B.

\(\frac{3}{8}\)

C.

\(\frac{1}{2}\)

D.

\(\frac{15}{16}\)

Correct answer is B

Let \(p(head) = p = \frac{1}{2}\) and \(p(tail) = q = \frac{1}{2}\)

\((p + q)^{4} = p^{4} + 4p^{3}q + 6p^{2}q^{2} + 4pq^{3} + q^{4}\)

The probability of equal heads and tails = \(6p^{2}q^{2} = 6(\frac{1}{2}^{2})(\frac{1}{2}^{2})\)

= \(\frac{6}{16} = \frac{3}{8}\).

570.

Given that \(y = 4 - 9x\) and \(\Delta x = 0.1\), calculate \(\Delta y\).

A.

9.0

B.

0.9

C.

-0.3

D.

-0.9

Correct answer is D

\(y = 4 - 9x\)

\(\frac{\mathrm d y}{\mathrm d x} = \frac{\Delta y}{\Delta x} = -9\)

\(\frac{\Delta y}{0.1} = -9 \implies \Delta y = -9 \times 0.1 = -0.9\)