Processing math: 48%

WAEC Further Mathematics Past Questions & Answers - Page 107

531.

Find the equation of a circle with centre (2, -3) and radius 2 units.

A.

x2+y24x+6y+9=0

B.

x2+y2+4x6y9=0

C.

x2+y2+4x+6y9=0

D.

x2+y2+4x6y+9=0

Correct answer is A

The equation of a circle with centre coordinate (a, b) and radius r is :

(xa)2+(yb)2=r2

Given centre = (2, -3) and radius r = 2 units

Equation = (x2)2+(y(3))2=22

x24x+4+y2+6y+9=4

x2+y24x+6y+4+94=0x2+y24x+6y+9=0

532.

The deviations from the mean of a set of numbers are (k+3)2,(k+7),2,k and (k+2)2, where k is a constant. Find the value of k.

A.

3

B.

2

C.

-2

D.

-3

Correct answer is D

The sum of deviations from the mean of a set of numbers equals 0.

(k+3)2+(k+7)+(2)+k+(k+2)2=0

(k2+6k+9)+(k+7)2+k+(k2+4k+4)=0

2k2+12k+18=0

2k2+6k+6k+18=2k(k+3)+6(k+3)=0

k=3(twice)

533.

Forces 90N and 120N act in the directions 120° and 240° respectively. Find the resultant of these forces.

A.

45(2i+2j)

B.

60(3i+7j)

C.

30(7i+3j)

D.

15(7i+3j)

Correct answer is D

F=Fcosθ+Fsinθ

\implies 90N = 90\cos 120° + 90\sin 120°

120N = 120 \cos 240° + 120 \sin 240°

R = F_{1} + F_{2}

= (90 \cos 120 + 120 \cos 240)i + (90\sin 120 + 120 \sin 240)j

= 90(-0.5) + 120(-0.5))i + (90(\frac{\sqrt{3}}{2}) + (120(-\frac{\sqrt{3}}{2}))j

= -105i - 15\sqrt{3}j = -15(7i + \sqrt{3}j)

534.

If a fair coin is tossed four times, what is the probability of obtaining at least one head?

A.

\frac{1}{2}

B.

\frac{1}{4}

C.

\frac{13}{16}

D.

\frac{15}{16}

Correct answer is D

P(at least one head) = 1 - P(4 tails)

Let p = \frac{1}{2} = probability of head and q = \frac{1}{2} = probability of tail.

(p + q)^{4} = p^{4} + 4p^{3}q + 6p^{2}q^{2} + 4pq^{3} + q^{4}

P(4 tails) = q^{4} = (\frac{1}{2})^{4} = \frac{1}{16}

P(at least one head) = 1 - \frac{1}{16} = \frac{15}{16}

535.

Find the coefficient of x^3 in the binomial expansion of (3x + 4)^4 in ascending powers of x

A.

432

B.

194

C.

144

D.

108

Correct answer is A

(3x + 4)^{4} = ^{4}C_{0}(3x)^{0}(4)^{4} + ^{4}C_{1}(3x)^{1}(4)^{3} + ^{4}C_{2}(3x)^{2}(4)^{2} + ^{4}C_{3}(3x)^{3}(4)^{1} + ^{4}C_{4}(3x)^{4}(4)^{0}

x^{3} = ^{4}C_{3}(3x)^{3}(4) = \frac{4!}{3!1!} \times 3^{3} \times 4

= 432x^{3}