2\(\sqrt{21}\)cm
\(\sqrt{42}\)cm
2\(\sqrt{19}\)cm
\(\sqrt{21}\)cm
Correct answer is A
From \(\bigtriangleup\) OMQ find /MQ/ by Pythagoras OQ2 = OM2 + MQ2
52 = 22 + MQ2
25 = 4 + MQ2
25 - 4 = MQ2
21 - MQ2
MQ2 = 21
MQ2 = \(\sqrt{21}\)
Length of chord = 2 x \(\sqrt{21}\) = 2\(\sqrt{21}\)cm
Given that p\(\frac{1}{3}\) = \(\frac{3\sqrt{q}}{r}\), make q the subject of the equation
q = p\(\sqrt{r}\)
q = p3r
q = pr3
q = pr\(\frac{1}{3}\)
Correct answer is D
p\(\frac{1}{3}\) = \(\frac{3\sqrt{q}}{r}\)(cross multiply)
3\(\sqrt{q}\) = r x 3\(\frac{\sqrt{q}}{r}\)(cross multiply)
3\(\sqrt{q}\) = r x 3\(\sqrt{p}\) cube root both side
q = 3\(\sqrt{r}\) x p
q = r\(\frac{1}{3}\)p = pr\(\frac{1}{3}\)
If \(\frac{1}{2}\)x + 2y = 3 and \(\frac{3}{2}\)x and \(\frac{3}{2}\)x - 2y = 1, find (x + y)
3
2
1
5
Correct answer is A
\(\frac{1}{2}\)x + 2y = 3......(i)(multiply by 2)
\(\frac{3}{2}\)x - 2y = 1......(ii)(multiply by 2)
x + 4y = 6......(iii)
3x - 4y = 2.....(iv) add (iii) and (iv)
4x = 8, x = \(\frac{8}{4}\) = 2
substitute x = 2 into equation (iii)
x + 4y = 6
2 + 4y = 6
4y = 6 - 2
4y = 4
y = \(\frac{4}{4}\)
= 1(x + y)
2 + 1 = 3
If x = 64 and y = 27, evaluate: \(\frac{x^{\frac{1}{2}} - y^{\frac{1}{3}}}{y - x^{\frac{2}{3}}}\)
2\(\frac{1}{5}\)
1
\(\frac{5}{11}\)
\(\frac{11}{43}\)
Correct answer is C
\(\frac{x^{\frac{1}{2}} - y^{\frac{1}{3}}}{y - x^{\frac{2}{3}}}\)
substitute x = 64 and y = 27
\(\frac{64^{\frac{1}{2}} - 27^{\frac{1}{3}}}{27 - 64^{\frac{2}{3}}} = \frac{\sqrt{64} - 3\sqrt{27}}{27 - (3\sqrt{64})^2}\)
= \(\frac{8 - 3}{27 - 16}\)
= \(\frac{5}{11}\)
Solve the inequality: \(\frac{2x - 5}{2} < (2 - x)\)
x > 0
x < \(\frac{1}{4}\)
x > 2\(\frac{1}{2}\)
x < 2\(\frac{1}{4}\)
Correct answer is D
\(\frac{2x - 5}{2} < \frac{(2 - x)}{1}\)
2x - 5 < 4 - 2x
2x + 2x < 4 + 5
4x < 9
x < \(\frac{9}{4}\)
x < 2\(\frac{1}{4}\)