q = p\(\sqrt{r}\)
q = p3r
q = pr3
q = pr\(\frac{1}{3}\)
Correct answer is D
p\(\frac{1}{3}\) = \(\frac{3\sqrt{q}}{r}\)(cross multiply)
3\(\sqrt{q}\) = r x 3\(\frac{\sqrt{q}}{r}\)(cross multiply)
3\(\sqrt{q}\) = r x 3\(\sqrt{p}\) cube root both side
q = 3\(\sqrt{r}\) x p
q = r\(\frac{1}{3}\)p = pr\(\frac{1}{3}\)
Solve \(\frac{y+2}{4}\) - \(\frac{y-1}{3}\) > 1...
Rationalize \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)...
How many students scored at least 3 marks? ...
simplify \(\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\) ...
Find the value of x in the diagram above ...
In the diagram, QRT is a straight line. If angle PTR = 90°, angle PRT = 60°, angle PQR = 30&...