WAEC Further Mathematics Past Questions & Answers - Page 100

496.

Express \(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)}\) in partial fractions.

A.

\(\frac{x^{2}}{x^{2} + 1} + \frac{x + 4}{1 - x}\)

B.

\(\frac{3}{1 - x} + \frac{2x + 1}{x^{2} + 1}\)

C.

\(\frac{x^{2}}{1 - x} + \frac{x + 4}{x^{2} + 1}\)

D.

\(\frac{3}{1 - x} + \frac{2x + 2}{x^{2} + 1}\)

Correct answer is B

\(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)} = \frac{A}{1 -  x} + \frac{Bx + C}{x^{2} + 1}\)

= \(\frac{A(x^{2} + 1) + (Bx + C)(1 - x)}{(1 - x)(x^{2} + 1)}\)

\(\implies x^{2} + x + 4 = A(x^{2} + 1) + (Bx + C)(1 - x)\)

\(x^{2} + x + 4 = Ax^{2} + A + Bx - Bx^{2} - Cx + C\)

\(\implies (A - B)x^{2} = x^{2}; A - B = 1 ...... (i)\)

\((B - C)x = x; B - C = 1 ..... (ii)\)

\(A + C = 4 ...... (iii)\)

Solving the above simultaneous equations by any of the known methods, we get

\(A = 3, B = 2, C = 1\)

\(\therefore  \frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)} = \frac{3}{1 - x} + \frac{2x + 1}{x^{2} + 1}\)

497.

A circular ink blot on a piece of paper increases its area at the rate \(4mm^{2}/s\). Find the rate of the radius of the blot when the radius is 8mm. \([\pi = \frac{22}{7}]\)

A.

0.20 mm/s

B.

0.08 mm/s

C.

0.25 mm/s

D.

0.05 mm/s

Correct answer is B

Given: \(\frac{\mathrm d A}{\mathrm d t} = 4 mm^{2}/s\)

\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)

\(A = \pi r^{2} \implies \frac{\mathrm d A}{\mathrm d r} = 2\pi r\)

\(\implies 4 = 2\pi r \times \frac{\mathrm d r}{\mathrm d t}\)

\(\frac{\mathrm d r}{\mathrm d t} = \frac{4}{2\pi r} = \frac{4 \times 7}{2 \times 22 \times 8}\)

= \(0.07954 mm/s \approxeq 0.08 mm/s\)

498.

The sales of five salesgirls on a certain day are as follows; GH¢ 26.00, GH¢ 39.00, GH¢ 33.00, GH¢ 25.00 and GH¢ 37.00. Calculate the standard deviation if the mean sale is GH¢ 32.00. 

A.

GH¢ 5.65

B.

GH¢ 5.66

C.

GH¢ 6.5

D.

GH¢ 6.56

Correct answer is B

\(x\) \(x - \bar{x}\) \((x - \bar{x})^{2}\)

26.00

-6 36
39.00 7 49
33.00 1 1
25.00 -7 49
37.00 5 25
    \(\sum (x - \bar{x})^{2}\)=160

\(S.D = \sqrt{\frac{(x - \bar{x})^{2}}{n}}\)

\(S.D = \sqrt{\frac{160}{5}} = \sqrt{32}\)

= \(GH¢ 5.656 \approxeq GH¢ 5.66\)

499.

Forces 50N and 80N act on a body as shown in the diagram. Find, correct to the nearest whole number, the horizontal component of the resultant force.

A.

13N

B.

43N

C.

57N

D.

95N

Correct answer is A

Given a force F, the horizontal component = \(F\cos \theta\)

R = \(-50\cos 30 + 80\cos 45\)

= \(-50(\frac{\sqrt{3}}{2}) + 80(\frac{\sqrt{2}}{2})\)

= \( -25\sqrt{3} + 40\sqrt{2} = -43.30 + 56.67 \)

= \(13.37N \approxeq 13N\)

500.

A committee consists of 5 boys namely: Kofi, John, Ojo, Ozo and James and 3 girls namely: Rose, Ugo and Ama. In how many ways can a sub-committee consisting of 3 boys and 2 girls be chosen, if Ozo must be on the sub-committee?

A.

35

B.

30

C.

18

D.

12

Correct answer is C

Since Ozo is a boy and must be in the sub-committee, we have 2 spaces for the boys and 2 for the girls.

= \(^{4}C_{2} \times ^{3}C_{2} \)

= \(\frac{4!}{(4 - 2)! 2!} \times \frac{3!}{(3 - 2)! 2!} = 6 \times 3 = 18\)