Solve the equation
\( 5^{(x − 2)} = (1 ÷ 125)^{(x +3)}\)
3/2
− 7/4
4/7
7/4
Correct answer is B
\( 5^{(x − 2)} = (125^{−1} )^{(x + 3)}\\
5^{(x − 2)} = (5− 3)^{x + 3}\\
5^{(x − 2)} = 5^{− 3x − 9}\\
x + 3x = − 9 + 2\\
4x = − 7\\
x = \frac{−7}{4} \)
The sum of two numbers is 5; their product is -14. Find the numbers.
x = 5 or 1
x = 7 or 1
x = 7 or 0
x = 7 or − 2
Correct answer is D
Let x represent the first number;
Then, the other is (5 − x) , since their sum is 5 and their product is 14
x(5 − x) = 14
5x − x2 = 14
x2 − 5x − 14 = 0
(x2 − 7x) + (2x − 14) = 0
x(x − 7) + 2(x − 7) = 0
(x − 7)(x + 2) = 0
Either (x − 7) = 0 or (x + 2) = 0
x = 7 or x = − 2
The two numbers are 7 and − 2
If √ (2x + 2) − √x =1 ,find x.
x = 1 twice
x = 0 or 1
x = 3 or 1
x = 2 twice
Correct answer is A
√(2x + 2 ) − √x = 1
√(2x + 2) = 1 + √x
Square both sides
√(2x + 2)2 = (1 + √x)2
((2x + 2)2)½ = 1 + √x + √x+ x
2x + 2 = 1 + 2√x +x
Collect the like term together
2x − x + 2 − 1 = 2 √x
x + 1 = 2√x
Square both sides
(x + 1)2 = (2√x)2
x2 + 2x + 1 = 4x
x2 + 2x − 4x + 1 = 0
(x2− x)(x + 1)= 0
x(x − 1) −1(x − 1)
(x − 1)(x −1)
Either (x − 1) = 0 or (x − 1) = 0
x = 1 or 1
x = 1 twice
10 √3
5 √3
20 √3
15 √3
Correct answer is C
√30 × √40
√(30 × 40)
√(3 × 10 × 4 × 10)
√(400 × 3)
√400 × √3
20 × √3
20√3
Calculate the value of x and y if (27x ÷ 81x+2y = 9 ,x + 4y = 0
x = 1, y = 1/2
x = 2, y = – 1/2
x − 0, y = 1
x = 2, y = –1
Correct answer is B
\(27^x ÷ 81^{(x + 2y)} = 9 \\
(27)x = 9 × 81^{(x+2y)} \\
(3^3 )^x =32 \times 3^{4(x + 2y)} \\
=3^{(2 + 4x + 8y)}\\
3^{3x} = 3^{ (2 + 4x + 8y)}\\
3x = 2 + 4x + 8y\\
3x − 4x − 8y = 2 … … … (1)\\
x + 4y = 0 … … … (2)\\
− 4y = 2\\
y = (− 2) ÷ 4 = − ½\\
y = − ½\\ \)
Substitute the value of y into equation (2)
i.e x + 4y = 0
x + 4( − 1/2) = 0
x − 2 = 0
x = 2
∴ x = 2,y = − ½)
Method II
\( 27^x ÷ 31^{(x + 2y) }= 9\\
3^{3x} × 3^{( − 4x − 8y)} = 32\\
3^{(3x − 8y)} = 32\\
− x − 8y=2 ……… (1)\\
x + 4y = 0 ……… (2)\\
− 4 = 2\\
y= 2/4 = ½\\
y = ½ \)
Substitute the value of y into equation 2
x + 4y=0
x + 4 (− 1) ÷ 2) = 0
x − 2 = 0
x = 2
x = 2, y = ½