Find the gradient of the line joining the points (3, 2) and (1, 4)
3/2
2/1
-1
3/2
Correct answer is C
Gradient of line joining points (3, 2), (1, 4)
Gradient = \(\frac{\text{Change in Y}}{\text{Change in X}}\)
= \(\frac{y_2 - Y_1}{x_2 - x_1}\)\)
(X1, Y1) = (3, 2)
(X2, Y2) = (1, 4)
Gradient = \(\frac{4 − 2}{1 + 3}\)
= \(\frac{2}{-2}\)
= −1
The operation * on the set R of real number is defined by x * y = 3x + 2y − 1, find 3* − 1
9
- 9
6
- 6
Correct answer is C
x * y is an operation on 3x + 2y − 1
Find 3A − 1
x = 3, y = −1
3 * − 1 on 3x + 2y − 1
3(3) + 2(−1) −1
= 9 − 2 − 1
= 6
Make S the subject of the relation
p = s + \(\frac{sm^2}{nr}\)
s = \(\frac{nrp}{nr + m^2}\)
s = nr + \(\frac{m^2}{mrp}\)
s = \(\frac{nrp}{mr}\) + m2
s = \(\frac{nrp}{nr}\) + m2
Correct answer is A
p = s + \(\frac{sm^2}{nr}\)
p = s + ( 1 + \(\frac{m^2}{nr}\))
p = s (1 + \(\frac{nr + m^2}{nr}\))
nr × p = s (nr + m2)
s = \(\frac{nrp}{nr + m^2}\)
Factorize completely X2+2XY+Y2+3X+3Y-18
(x + y + 6)(x + y -3)
(x - y - 6)(x - y + 3)
(x - y + 6)(x - y - 3)
(x + y - 6)(x + y + 3)
Correct answer is A
\(x^{2} + 2xy + y^{2} + 3x + 3y - 18\)
\(x^{2} + 2xy + 3x + y^{2} + 3y -18\)
\(x^{2} + 2xy - 3x + 6x + y^{2} -3y + 6y -18\)
\(x^{2} + 2xy -3x + y^{2} -3y + 6x + 6y -18\)
\(x^{2} + xy -3x + xy + y^{2} - 3y + 6x + 6y -18\)
x(x + y - 3) + y(x + y - 3) + 6(x + y - 3)
= (x + y - 3)(x + y + 6)
= (x + y + 6)(x + y -3)
10cm
19cm
17cm
12cm
Correct answer is B
Find the diagram
Sin 70°
x = 10 Sin 70°
= 9.3969
Hence, length of chord MN = 2x
= 2 × 9.3969
= 18.79
= 19cm (nearest cm)