JAMB Mathematics Past Questions & Answers - Page 54

266.

If P varies inversely as the square root of q, where p = 3 and q = 16, find the value of q when p = 4.

A.

12

B.

8

C.

9

D.

16

Correct answer is C

\(p \propto \frac{1}{\sqrt{q}}\)

\(\implies p = \frac{k}{\sqrt{q}}\)

when p = 3, q = 16.

\(3 = \frac{k}{\sqrt{16}}\)

\(k = 3 \times 4 = 12\)

\(\therefore p = \frac{12}{\sqrt{q}}\)

when p = 4,

\(4 = \frac{12}{\sqrt{q}} \implies \sqrt{q} = \frac{12}{4}\)

\(\sqrt{q} = 3 \implies q = 3^2 \)

\(q = 9\)

267.

Integrate \(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)

A.

\(4\frac{1}{2}\)

B.

\(3\frac{1}{2}\)

C.

\(7\frac{1}{2}\)

D.

\(5\frac{1}{4}\)

Correct answer is C

\(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)

= \([\frac{2x^{2 + 1}}{3} + \frac{x^{1 + 1}}{2}]_{-1} ^{2}\)

= \([\frac{2x^{3}}{3} + \frac{x^{2}}{2}]_{-1} ^{2}\)

= \((\frac{2(2)^{3}}{3} + \frac{2^2}{2}) - (\frac{2(-1)^{3}}{3} + \frac{(-1)^{2}}{2})\)

= \((\frac{16}{3} + 2) - (\frac{-2}{3} + \frac{1}{2})\)

= \(\frac{22}{3} - (-\frac{1}{6})\)

= \(\frac{22}{3} + \frac{1}{6}\)

= \(\frac{15}{2}\)

= \(7\frac{1}{2}\)

268.

The nth term of a sequence is given by 2\(^{2n - 1}\). Find the sum of the first four terms.

A.

74

B.

32

C.

42

D.

170

Correct answer is D

\(T_n = 2^{2n - 1}\)

\(T_1 = 2^{2(1) - 1} \)

= 2

\(T_2 = 2^{2(2) - 1}\)

= 8

\(T_3 = 2^{2(3) - 1}\)

= 32

\(T_4 = 2^{2(4) - 1}\)

= 128

\(T_1 + T_2 + T_3 + T_4 = 2 + 8 + 32 + 128\)

= 170

269.

Solve the inequality: -7 \(\leq\) 9 - 8x < 16 - x

A.

-1 \(\leq\) x \(\leq\) 2

B.

-1 \(\leq\) x < 2

C.

-1 < x < 2

D.

-1 < x \(\leq\) 2

Correct answer is D

-7 \(\leq\) 9 - 8x < 16 - x

-7 \(\leq\) 9 - 8x and 9 - 8x < 16 - x

-7 - 9 \(\leq\) -8x and -8x + x < 16 - 9

-16 \(\leq\) -8x and -7x < 7

\(\therefore\) x \(\leq\) 2 and -1 < x

-1 < x \(\leq\) 2.

270.

Solve for x in \(\frac{4x - 6}{3} \leq \frac{3 + 2x}{2}\)

A.

\(x \leq 1\frac{1}{2}\)

B.

\(x \leq \frac{21}{2}\)

C.

\(x \geq \frac{21}{2}\)

D.

\(x \geq 1\frac{1}{2}\)

Correct answer is B

\(\frac{4x - 6}{3} \leq \frac{3 + 2x}{2}\)

2(4x - 6) \(\leq\) 3(3 + 2x)

8x - 12 \(\leq\) 9 + 6x

8x - 6x \(\leq\) 9 + 12

2x \(\leq\) 21

\(x \leq \frac{21}{2}\)