If N225.00 yields N27.00 in x years simple interest at the rate of 4% per annum, find x.
3
4
12
17
Correct answer is A
Principal = N225.00, interest = N27.00
Year = x, Rate = 4%
1 = \(\frac{PRT}{100}\)
27 = \(\frac{225 \times 4 \times x}{100}\) = 2700 = 900T
T = \(\frac{2700}{900}\)
= 3 years
Find the equation of the line through the points (5, 7) parallel to the line 7x + 5y = 12.
5x + 7y = 120
7x + 5y = 70
x + y = 7
15x + 17y = 90
Correct answer is B
Equation through (5,7) parallel to the line
7x + 5y = 12
5y = 7x + 12
y = \(\frac{-7x}{5} + \frac{12}{5}\)
Gradient = \(\frac{-7}{5}\)
Required equation = \(\frac{y - 7}{x - 5} = \frac{-7}{5}\)
i.e. 5y - 35 = -7x + 35
5y + 7x = 70
Age in years | 7 | 8 | 9 | 10 | 11 |
No of pupils | 4 | 13 | 30 | 44 | 9 |
The table above shows the number of pupils in a class with respect to their ages. If a pie chart is constructed to represent the age, the angle corresponding to 8 years old is
48.6°
56.3°
46.8°
13°
Correct answer is C
Total number of pupils : 4 + 13 + 30 + 44 + 9 = 100
The number of 8 - year olds = 13
The angle represented by the 8-year olds on the pie chart = \(\frac{13}{100} \times 360°\)
= 46.8°
Find the gradient of the line passing through the points (-2, 0) and (0, -4)
2
-4
-2
4
Correct answer is C
Given (-2, 0) ans (0, -4).
Gradient = \(\frac{y_2 - y_1}{x_2 - x_1}\)
= \(\frac{-4 - 0}{0 - (-2)}\)
= \(\frac{-4}{2}\)
= -2
In this fiqure, PQ = PR = PS and SRT = 68\(^o\). Find QPS
136\(^o\)
124\(^o\)
112\(^o\)
68\(^o\)
Correct answer is A
Since PQRS is quadrilateral
2y + 2x + QPS = 360\(^o\)
i.e. (y + x) + QPS = 360\(^o\)
QPS = 360\(^o\) - 2 (y + x)
But x + y + 68\(^o\) = 180\(^o\)
There; x + y = 180\(^o\) - 68\(^o\) = 112\(^o\)
QPS = 360 - 2(112\(^o\))
= 360\(^o\) - 224 = 136\(^o\)