JAMB Mathematics Past Questions & Answers - Page 34

166.

Determine the maximum value of y=3x\(^2\) + 5x - 3

A.

6

B.

0

C.

2

D.

No correct option

Correct answer is D

y=3x\(^2\) + 5x - 3

dy/dx = 6x + 5

as dy/dx = 0

6x + 5 = 0

x = \(\frac{-5}{6}\)

Maximum value: 3 \( ^2{\frac{-5}{6}}\)  + 5 \(\frac{-5}{6}\) - 3

3 \(\frac{75}{36}\) - \(\frac{25}{6}\) - 3

Using the L.C.M. 36

= \(\frac{25 - 50 - 36}{36}\)

= \(\frac{-61}{36}\)

No correct option

167.

What is the rate of change of the volume V of a hemisphere with respect to its radius r when r = 2?

A.

B.

16π

C.

D.

Correct answer is A

\(V = \frac{2}{3} \pi r^{3}\)

\(\frac{\mathrm d V}{\mathrm d r} = 2\pi r^{2}\)

\(\frac{\mathrm d V}{\mathrm d r} (r = 2) = 2\pi (2)^{2}\)

= \(8\pi\)

168.

In how many ways can 2 students be selected from a group of 5 students in a debating competition?

A.

25 ways

B.

10 ways

C.

15 ways

D.

20 ways

Correct answer is B

\(In\hspace{1mm} ^{5}C_{2}\hspace{1mm}ways\hspace{1mm}=\frac{5!}{(5-2)!2!}\\=\frac{5!}{3!2!}\\=\frac{5\times4\times3!}{3!\times2\times1}\\=10\hspace{1mm}ways\)

169.

Solve the following equation: \(\frac{2}{(2r - 1)}\) - \(\frac{5}{3}\) =  \(\frac{1}{(r + 2)}\)

A.

( -1,\(\frac{5}{2}\) )

B.

( 1, - \(\frac{5}{2}\) )

C.

( \(\frac{5}{2}\), 1 )

D.

(2,1)

Correct answer is B

\(\frac{2}{(2r - 1)}\) - \(\frac{5}{3}\) =  \(\frac{1}{(r + 2)}\)

\(\frac{2}{(2r - 1)}\) - \(\frac{1}{(r + 2)}\)  = \(\frac{5}{3}\)

The L.C.M.: (2r - 1) (r + 2) 

\(\frac{2(r + 2) - 1(2r - 1)}{(2r - 1) (r + 2)}\) = \(\frac{5}{3}\)

\(\frac{2r + 4 - 2r + 1}{ (2r - 1) (r + 2)}\) = \(\frac{5}{3}\)

cross multiply the solution

3 * 5 = (2r - 1) (r + 2) * 5

divide both sides 5

3 =  2r\(^2\) + 3r - 2 (when expanded)

collect like terms

2r\(^2\) + 3r - 2 - 3 = 0

2r\(^2\) + 3r - 5 = 0

Factors are -2r and +5r

2r\(^2\) -2r + 5r - 5 = 0

[2r\(^2\) -2r] [+ 5r - 5] = 0

2r(r-1) + 5(r-1) = 0

(2r+5) (r-1) = 0

 r = 1 or - \(\frac{5}{2}\)

170.

The fourth term of an Arithmetic Progression (A.P) is 37 and the first term is -20. Find the common difference.

A.

3

B.

57

C.

19

D.

17

Correct answer is C

a + 3d = 37

-20 + 3d = 37 

3d = 37 + 20 = 57

d = \(\frac{57}{3}\) 

= 19