JAMB Mathematics Past Questions & Answers - Page 329

1,641.

The value of y for which \(\frac{1}{5}y + \frac{1}{5} < \frac{1}{2}y + \frac{2}{5}\) is

A.

\(y > \frac{2}{3}\)

B.

\(y < \frac{2}{3}\)

C.

\(y > -\frac{2}{3}\)

D.

\(y < -\frac{2}{3}\)

Correct answer is C

\(\frac{1}{5}y + \frac{1}{5} < \frac{1}{2}y + \frac{2}{5}\)

Collect like terms

\(\frac{y}{5} - \frac{y}{2} < \frac{2}{5} - \frac{1}{5}\)

\(\frac{2y - 5y}{10} < \frac{2 - 1}{5}\)

\(\frac{-3y}{10} < \frac{1}{5}\)

\(y > \frac{-2}{3}\)

1,642.

U is inversely proportional to the cube of V and U = 81 when V = 2. Find U when V = 3

A.

24

B.

27

C.

32

D.

36

Correct answer is A

U \(\propto \frac{1}{V^3}\)

U = \(\frac{k}{V^3}\)

k = UV\(^3\)

k = 81 x 2\(^3\) = 81 x 8

When V = 3,

U = \(\frac{k}{V^3}\)

U = \(\frac{81 \times 8}{3^3}\)

U = \(\frac{81 \times 8}{27}\) = 24

1,643.

If y varies directly as \(\sqrt{n}\) and y = 4 when n = 4, find y when n = 1\(\frac{7}{9}\)

A.

\(\sqrt{17}\)

B.

\(\frac{4}{3}\)

C.

\(\frac{8}{3}\)

D.

\(\frac{2}{3}\)

Correct answer is C

y \(\propto \sqrt{n}\)

y = k\(\sqrt{n}\)

when y = 4, n = 4
4 = k\(\sqrt{4}\)

4 = 2k

k = 2

Therefore,

y = 2\(\sqrt{n}\)

y = 2\(\sqrt{\frac{16}{9}}\)

y = 2\((\frac{4}{3})\)

y = \(\frac{8}{3}\)

1,644.

Solve for x and y in the equations below
x2 - y2 = 4
x + y = 2

A.

x = 0, y = -2

B.

x = 0, y = 2

C.

x = 2, y = 0

D.

x = -2, y = 0

Correct answer is C

x2 - y2 = 4 .... (1)
x + y = 2 .... (2)

Simplify eqn (1)

(x + y)(x - y) = 4

From eqn (2)
x + y = 2 so substitute it into simplified eqn (1), we have

2 (x - y) = 4

therefore,
x - y = 2 ... (1)
x + y = 2
---------
2x = 4
---------

x = 2, when y = 0

1,645.

Find the remainder when 2x3 - 11x2 + 8x - 1 is divided by x + 3

A.

-871

B.

-781

C.

-187

D.

-178

Correct answer is D

Hence f(x) = 2x3 - 11x2 + 8x - 1

f(-3) = 2(-3)3 - 11(-3)2 + 8(-3) - 1

= 2(-27) - 11(9) + 8(-3) - 1

= -54 - 99 - 24 - 1

= -178