The nth term of the progression \(\frac{4}{2}\), \(\frac{7}{3}\), \(\frac{10}{4}\), \(\frac{13}{5}\) is ...

A.

\(\frac{1 - 3n}{n + 1}\)

B.

\(\frac{3n + 1}{n + 1}\)

C.

\(\frac{3n + 1}{n - 1}\)

D.

\(\frac{3n - 1}{n + 1}\)

Correct answer is B

Using Tn = \(\frac{3n + 1}{n + 1}\),

T1 = \(\frac{3(1) + 1}{(1) + 1} = \frac{4}{2}\)

T2 = \(\frac{3(2) + 1}{(2) + 1} = \frac{7}{3}\)

T3 = \(\frac{3(3) + 1}{(3) + 1} = \frac{10}{4}\)