JAMB Mathematics Past Questions & Answers - Page 321

1,601.

Solve the inequality -6(x + 3) \(\leq\) 4(x - 2)

A.

x \(\leq\) 2

B.

x \(\geq\) -1

C.

x \(\geq\) -2

D.

x \(\leq\) -1

Correct answer is B

-6(x + 3) \(\leq\) 4(x - 2)

-6(x +3) \(\leq\) 4(x - 2)

-6x -18 \(\leq\) 4x - 8

-18 + 8 \(\leq\) 4x +6x

-10 \(\leq\) 10x

10x \(\geq\) -10

x \(\geq\) -1

1,602.

T varies inversely as the cube of R. When R = 3, T = \(\frac{2}{81}\), find T when R = 2

A.

\(\frac{1}{18}\)

B.

\(\frac{1}{12}\)

C.

\(\frac{1}{24}\)

D.

\(\frac{1}{6}\)

Correct answer is B

T \(\alpha \frac{1}{R^3}\)

T = \(\frac{k}{R^3}\)

k = TR3

= \(\frac{2}{81}\) x 33

= \(\frac{2}{81}\) x 27

dividing 81 by 27

k = \(\frac{2}{2}\)

therefore, T = \(\frac{2}{3}\) x \(\frac{1}{R^3}\)

When R = 2

T = \(\frac{2}{3}\) x \(\frac{1}{2^3}\) = \(\frac{2}{3}\) x \(\frac{1}{8}\)

= \(\frac{1}{12}\)

1,603.

If x varies directly as square root of y and x = 81 when y = 9, Find x when y = 1\(\frac{7}{9}\)

A.

20\(\frac{1}{4}\)

B.

27

C.

2\(\frac{1}{4}\)

D.

36

Correct answer is D

x \(\alpha\sqrt y\)

x = k\(\sqrt y\)

81 = k\(\sqrt9\)

k = \(\frac{81}{3}\)

= 27

therefore, x = 27\(\sqrt y\)

y = 1\(\frac{7}{9}\) = \(\frac{16}{9}\)

x = 27 x \(\sqrt{\frac{16}{9}}\)

= 27 x \(\frac{4}{3}\)

dividing 27 by 3

= 9 x 4

= 36

1,604.

Solve for x and y respectively in the simultaneous equations -2x - 5y = 3. x + 3y = 0

A.

-3, -9

B.

9, -3

C.

-9,3

D.

3, -9

Correct answer is C

-2x -5y = 3 x + 3y = 0 x = -3y -2 (-3y) - 5y = -3 6y - 5y = 3 y = 3 but, x = -3y x = -3(3) x = -9 therefore, x = -9, y = 3

1,605.

Factorize completely 9y2 - 16X2

A.

(3y - 2x)(3y + 4x)

B.

(3y + 4x)(3y + 4x)

C.

(3y + 2x)(3y - 4x)

D.

(3y - 4x)(3y + 4x)

Correct answer is D

9y2 - 16x2

= 32y2 - 42x2

= (3y - 4x)(3y +4x)