112o
102o
82o
52o
Correct answer is D
(x + 15)° + (2x - 45)° + (x + 10)° = (2n - 4)90°
when n = 4
x + 15° + 2x - 45° + x - 30° + x + 10° = (2 x 4 - 4) 90°
5x - 50° = (8 - 4)90°
5x - 50° = 4 x 90° = 360°
5x = 360° + 50°
5x = 410°
x = \(\frac{410^o}{5}\)
= 82°
Hence, the value of the least interior angle is (x - 30°)
= (82 - 30)°
= 52°
If P = \(\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}\) , what is P\(^-1\)
\(\begin{pmatrix} -{\frac{1}{5}} & -{\frac{3}{5}} \\ -{\frac{1}{5}} & -{\frac{2}{5}} \end{pmatrix}\)
\(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ {\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)
\(\begin{pmatrix} -{\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)
\(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)
Correct answer is D
P = \(\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}\)
|P| = 2 - 1 x -3 = 5
P-1 = \(\frac{1}{5}\)\(\begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}\)
= \(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)
Evaluate \(\begin{vmatrix} 2 & 0 & 5 \\ 4 & 6 & 3 \\ 8 & 9 & 1 \end{vmatrix}\)
5y - 2x -18 = 0
102
-102
-42
Correct answer is C
\(\begin{vmatrix} 2 & 0 & 5 \\ 4 & 6 & 3 \\ 8 & 9 & 1 \end{vmatrix}\)
= 2(6 - 27) - 0(4 - 24) + 5(36 - 48)
= 2(-21) - 0 + 5(-12)
= -42 + 5(-12)
= -42 - 60
= -102
Find the sum to infinity of the following series. 0.5 + 0.05 + 0.005 + 0.0005 + .....
\(\frac{5}{8}\)
\(\frac{5}{7}\)
\(\frac{5}{11}\)
\(\frac{5}{9}\)
Correct answer is D
Using S\(\infty\) = \(\frac{a}{1 - r}\)
r = \(\frac{0.05}{0.5}\) = \(\frac{1}{10}\)
S\(\infty\) = \(\frac{0.5}{{\frac{1}{10}}}\)
= \(\frac{0.5}{({\frac{9}{10}})}\)
= \(\frac{0.5 \times 10}{9}\)
= \(\frac{5}{9}\)
Solve the inequalities -6 \(\leq\) 4 - 2x < 5 - x
-1 < x < 5
-1 < x \(\leq\) 5
-1 \(\leq\) x \(\leq\) 6
-1 \(\leq\) x < 6
Correct answer is B
-6 \(\leq\) 4 - 2x < 5 - x
split inequalities into two and solve each part as follows:
-6 \(\leq\) 4 - 2x = -6 - 4 \(\leq\) -2x
-10 \(\leq\) -2x
\(\frac{-10}{-2}\) \(\geq\) \(\frac{-2x}{-2}\)
giving 5 \(\geq\) x or x \(\leq\) 5
4 - 2x < 5 - x
-2x + x < 5 - 4
-x < 1
\(\frac{-x}{-1}\) > \(\frac{1}{-1}\)
giving x > -1 or -1 < x
Combining the two results, gives -1 < x \(\leq\) 5