JAMB Mathematics Past Questions & Answers - Page 312

1,556.

The interior angles of a quadrilateral are (x + 15)°, (2x - 45)°, ( x - 30)° and (x + 10)°. Find the value of the least interior angle.

A.

112o

B.

102o

C.

82o

D.

52o

Correct answer is D

(x + 15)° + (2x - 45)° + (x + 10)° = (2n - 4)90°

when n = 4

x + 15° + 2x - 45° + x - 30° + x + 10° = (2 x 4 - 4) 90°

5x - 50° = (8 - 4)90°

5x - 50° = 4 x 90° = 360°

5x = 360° + 50°

5x = 410°

x = \(\frac{410^o}{5}\)

= 82°

Hence, the value of the least interior angle is (x - 30°)

= (82 - 30)°

= 52°

1,557.

If P = \(\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}\) , what is P\(^-1\)

A.

\(\begin{pmatrix} -{\frac{1}{5}} & -{\frac{3}{5}} \\ -{\frac{1}{5}} & -{\frac{2}{5}} \end{pmatrix}\)

B.

\(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ {\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)

C.

\(\begin{pmatrix} -{\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)

D.

\(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)

Correct answer is D

P = \(\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}\)

|P| = 2 - 1 x -3 = 5

P-1 = \(\frac{1}{5}\)\(\begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}\)

= \(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)

1,558.

Evaluate \(\begin{vmatrix} 2 & 0 & 5 \\ 4 & 6 & 3 \\ 8 & 9 & 1 \end{vmatrix}\)

A.

5y - 2x -18 = 0

B.

102

C.

-102

D.

-42

Correct answer is C

\(\begin{vmatrix} 2 & 0 & 5 \\ 4 & 6 & 3 \\ 8 & 9 & 1 \end{vmatrix}\)

= 2(6 - 27) - 0(4 - 24) + 5(36 - 48)

= 2(-21) - 0 + 5(-12)

= -42 + 5(-12)

= -42 - 60

= -102

1,559.

Find the sum to infinity of the following series. 0.5 + 0.05 + 0.005 + 0.0005 + .....

A.

\(\frac{5}{8}\)

B.

\(\frac{5}{7}\)

C.

\(\frac{5}{11}\)

D.

\(\frac{5}{9}\)

Correct answer is D

Using S\(\infty\) = \(\frac{a}{1 - r}\)

r = \(\frac{0.05}{0.5}\) = \(\frac{1}{10}\)

S\(\infty\) = \(\frac{0.5}{{\frac{1}{10}}}\)


= \(\frac{0.5}{({\frac{9}{10}})}\)

= \(\frac{0.5 \times 10}{9}\)

= \(\frac{5}{9}\)

1,560.

Solve the inequalities -6 \(\leq\) 4 - 2x < 5 - x

A.

-1 < x < 5

B.

-1 < x \(\leq\) 5

C.

-1 \(\leq\) x \(\leq\) 6

D.

-1 \(\leq\) x < 6

Correct answer is B

-6 \(\leq\) 4 - 2x < 5 - x
split inequalities into two and solve each part as follows:

-6 \(\leq\) 4 - 2x = -6 - 4 \(\leq\) -2x

-10 \(\leq\) -2x

\(\frac{-10}{-2}\) \(\geq\) \(\frac{-2x}{-2}\)

giving 5 \(\geq\) x or x \(\leq\) 5

4 - 2x < 5 - x

-2x + x < 5 - 4

-x < 1

\(\frac{-x}{-1}\) > \(\frac{1}{-1}\)

giving x > -1 or -1 < x

Combining the two results, gives -1 < x \(\leq\) 5