Find the value of x at the minimum point of the curve y =...
Find the value of x at the minimum point of the curve y = x3 + x2 - x + 1
\(\frac{1}{3}\)
-\(\frac{1}{3}\)
1
-1
Correct answer is A
y = x3 + x2 - x + 1
\(\frac{dy}{dx}\) = \(\frac{d(x^3)}{dx}\) + \(\frac{d(x^2)}{dx}\) - \(\frac{d(x)}{dx}\) + \(\frac{d(1)}{dx}\)
\(\frac{dy}{dx}\) = 3x2 + 2x - 1 = 0
\(\frac{dy}{dx}\) = 3x2 + 2x - 1
At the maximum point \(\frac{dy}{dx}\) = 0
3x2 + 2x - 1 = 0
(3x2 + 3x) - (x - 1) = 0
3x(x + 1) -1(x + 1) = 0
(3x - 1)(x + 1) = 0
therefore x = \(\frac{1}{3}\) or -1
For the maximum point
\(\frac{d^2y}{dx^2}\) < 0
\(\frac{d^2y}{dx^2}\) 6x + 2
when x = \(\frac{1}{3}\)
\(\frac{dx^2}{dx^2}\) = 6(\(\frac{1}{3}\)) + 2
= 2 + 2 = 4
\(\frac{d^2y}{dx^2}\) > o which is the minimum point
when x = -1
\(\frac{d^2y}{dx^2}\) = 6(-1) + 2
= -6 + 2 = -4
-4 < 0
therefore, \(\frac{d^2y}{dx^2}\) < 0
the minimum point is 1/3
If \(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\), find the value of x....
Using the above graph, if 10o < x < 60o, what is the value of x for which sin x = cos x? ...
If 2x + 3y = 1 and x - 2y = 11, find (x + y) ...
If y varies inversely as x and x = 3 when y =4. Find the value of x when y = 12 ...
If tan y = 0.404, where y is acute, find cos 2y ...
In the figure, the area of the shaded segment is ...
Find the dimensions of a rectangle of greatest area which has a fixed perimeter p. ...
Find the median of the following set of numbers: 28, 29, 39, 38, 33, 37, 26, 20, 15, 25 ...
In the figure, PQRS is a circle with ST||RQ. Find the value of x if PT = pS ...
A string is 4.8m. A boy measured it to be 4.95m. Find the percentage error. ...