Factorize r2 - r(2p + q) + 2pq
(r - 2q)(2r - p)
(r - p)(r + p0
(r - q)(r - 2p)
(2r - q)(r + p)
Correct answer is C
r2 - r(2p + q) + 2pq = r2 - 2pr -qr + 2pq
= r(r - 2p) - q(r - 2p)
= (r - q)(r - 2p)
2, -1
-1, 2
3, -2
-2, 3
Correct answer is B
pm2 + qm + 1 = (m - 1) Q(x) + 2
p(1)2 + q(1) + 1 = 2
p + q + 1 = 2
p + q = 1.....(i)
pm2 + qm + 1 = (m - 1)Q(x) + 4
p(-1)2 + q(-1) + 1 = 4
p - q + 1 = 4
p - q = 3....(ii)
p + q = 1, p - q = -3
2p = -2, p = -1
-1 + q = 1
q = 2
r(35 + q)
q(35r - q)
q(35 + r)
r(35 + 2q)
Correct answer is D
The cost of normal work = 35r
The cost of overtime = q x 2r = 2qr
The man's total weekly earning = 35r + 2qr
= r(35 + 2q)
N62.50
N35.00
N31.00
N25.00
Correct answer is D
V\(\pi\)r2h = \(\pi\)(3)2(10) = 90\(\pi\)cm3
V = \(\pi\)(5)2 x 18 = 450\(\pi\)cm3
No of volume = \(\frac{450\pi}{90\pi}\)
= 5
selling price = 5 x N15 = N75
profit = N75 - N50 = N25.00
Find the value of k if \(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)
3
2
\(\sqrt{3}\)
\(\sqrt 2\)
Correct answer is D
\(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)
\(\frac{k}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
= k\(\sqrt{3 - 2}\)
= k(\(\sqrt{3} - \sqrt{2}\))
= k\(\sqrt{3 - 2}\)
= k\(\sqrt{3}\) - k\(\sqrt{2}\)
= k\(\sqrt{3 - 2}\)
k2 = \(\sqrt{2}\)
k = \(\frac{2}{\sqrt{2}}\)
= \(\sqrt{2}\)