Evaluate [10.03 ÷ 10.024]-1 correct to 2 decimal places
3.76
1.25
0.94
0.75
Correct answer is B
[10.03 + 10.024]
= [10.03×0.024]-1
= [0.0240.003]-1
= 0.030.024
= 3024 = 1.25
If 10112 + x7 = 2510, solve for X.
207
14
20
24
Correct answer is A
10112 + x7 = 2510 = 10112 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 2o
= 8 + 0 + 2 + 1
= 1110
x7 = 2510 - 1110
= 1410
71472R00R2
X = 207
Find the roots of x3 - 2x2 - 5x + 6 = 0
1, -2, 3
1, 2, -3,
-1, -2, 3
-1, 2, -3
Correct answer is A
Equation: x3 - 2x2 - 5x + 6 = 0.
First, bring out an which is the coefficient of x3 = 1.
Then, a0 which is the coefficient void of x = 6.
The factors of an = 1; The factors of a0 = 1, 2, 3 and 6.
The numbers to test for the roots are ±(a0an).
= ±(1,2,3,6).
Test for +1: 13 - 2(12) - 5(1) + 6 = 1 - 2 - 5 + 6 = 0.
Therefore x = 1 is a root of the equation.
Using long division method, x3−2x2−5x+6x−1 = x2 - x - 6.
x2 - x - 6 = (x - 3)(x + 2).
x = -2, 3.
∴ The roots of the equation = 1, -2 and 3.
\begin{pmatrix} 3 & -1 & 0 \\ 4 & -3 & -1 \\ -4 & 1 & 1\end{pmatrix}
\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 1 \\ -4 & 1 & 1\end{pmatrix}
\begin{pmatrix} 3 & -1 & 0 \\ 4 & -3 & 1 \\ -4 & 1 & 1\end{pmatrix}
\begin{pmatrix} 3 & -1 & 0 \\ 4 & 1 & 1 \\ -4 & -1 & 1\end{pmatrix}
Correct answer is B
2(1) - (-1) = 3 2(2) - (0) = 4 2(-1) - (2) = -4
2(0) - (1) = -1 2(-1) - (-1) = -1 2(0) - (-1) = 1
2(1) - 2 = 0 2(0) - (-1) = 1 2(1) - (1) = 1
\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 1 \\ -4 & 1 & 1\end{pmatrix}
-4
45
4,2
2
Correct answer is C
2p x 1 + 8 x 2 = 24
\to 4p = 24 - 8 = 16,
p = 4
3 x 1 + -5q x 2 = -17
\to -10q = -17 - 3
-10q = -20
q = 2