Processing math: 66%

JAMB Mathematics Past Questions & Answers - Page 302

1,506.

Evaluate [10.03 ÷ 10.024]-1 correct to 2 decimal places

A.

3.76

B.

1.25

C.

0.94

D.

0.75

Correct answer is B

[10.03 + 10.024]

= [10.03×0.024]-1

= [0.0240.003]-1

= 0.030.024

= 3024 = 1.25

1,507.

If 10112 + x7 = 2510, solve for X.

A.

207

B.

14

C.

20

D.

24

Correct answer is A

10112 + x7 = 2510 = 10112 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 2o

= 8 + 0 + 2 + 1

= 1110

x7 = 2510 - 1110

= 1410

71472R00R2

X = 207

1,508.

Find the roots of x3 - 2x2 - 5x + 6 = 0

A.

1, -2, 3

B.

1, 2, -3,

C.

-1, -2, 3

D.

-1, 2, -3

Correct answer is A

Equation: x3 - 2x2 - 5x + 6 = 0.

First, bring out an which is the coefficient of x3 = 1.

Then, a0 which is the coefficient void of x = 6.

The factors of an = 1; The factors of a0 = 1, 2, 3 and 6.

The numbers to test for the roots are ±(a0an).

= ±(1,2,3,6).

Test for +1: 13 - 2(12) - 5(1) + 6 = 1 - 2 - 5 + 6 = 0.

Therefore x = 1 is a root of the equation.

Using long division method, x32x25x+6x1 = x2 - x - 6.

x2 - x - 6 = (x - 3)(x + 2).

x = -2, 3.

The roots of the equation = 1, -2 and 3.

1,509.

If x = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ -1 & 0 & 1\end{pmatrix} and y = \begin{pmatrix} -1 & 1 & 2 \\ 0 & -1 & -1 \\ 2 & -1 & 1\end{pmatrix}
find 2x - y

A.

\begin{pmatrix} 3 & -1 & 0 \\ 4 & -3 & -1 \\ -4 & 1 & 1\end{pmatrix}

B.

\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 1 \\ -4 & 1 & 1\end{pmatrix}

C.

\begin{pmatrix} 3 & -1 & 0 \\ 4 & -3 & 1 \\ -4 & 1 & 1\end{pmatrix}

D.

\begin{pmatrix} 3 & -1 & 0 \\ 4 & 1 & 1 \\ -4 & -1 & 1\end{pmatrix}

Correct answer is B

2(1) - (-1) = 3      2(2) - (0) = 4          2(-1) - (2) = -4

2(0) - (1) = -1      2(-1) - (-1) = -1      2(0) - (-1) = 1

2(1) - 2 = 0         2(0) - (-1) = 1         2(1) - (1) = 1

\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 1 \\ -4 & 1 & 1\end{pmatrix}