Find the positive value of x if the standard deviation of the numbers 1, x + 1, 2x + 1 is 6
1
2
3
4
Correct answer is C
mean (x) = \(\frac{1 + x + 1 + 2x + 1}{3}\)
= \(\frac{3x + 3}{3}\)
= 1 + x
\(\begin{array}{c|c} X & (X -X) & (X -X)^2\\ \hline 1 & -x & x^2 \\ x + 1 & 0 & 0\\2x + 1 & x & x^2\\ \hline & & 2x^2\end{array}\)
S.D = \(\sqrt{\frac{\sum(x - 7)^2}{\sum f}}\)
= \(\sqrt{(6)}^2\)
= \(\frac{2x^2}{3}\)
= 2x2
= 18
x2 = 9
∴ x = \(\pm\) \(\sqrt{9}\)
= \(\pm\)3
Find the variance of the numbers k, k+1, k+2,
\(\frac{2}{3}\)
1
k + 1
(k + 1)2
Correct answer is A
mean (x) = \(\frac{\sum x}{N}\)
= k + k + 1 + k + 3
= \(\frac{3k + 3}{3}\)
= k + 1
\(\begin{array}{c|c} X & (X -X) & (X -X)^2\\ \hline k & -1 & 1 \\ k + 1 & 0 & 0\\ k + 2 & 1 \\ \hline & & 2\end{array}\)
Variance (52) = \(\frac{\sum (x - x)^2}{N}\)
= \(\frac{2}{3}\)
12.2
12.27
12.9
13.4
Correct answer is B
\(\begin{array}{c|c} \text{Class intervals} & F & \text{Class boundary}\\ \hline 5 - 7 & 17 & 4.5 - 9.5\\ 10 - 14 & 32 & 9.5 - 14.5\\ 15 - 19 & 25 & 14.5 - 19.5\\ 20 - 24 & 24 & 19.5 - 24.5 \end{array}\)
mode = 9.5 + \(\frac{D_1}{D_2 + D_1}\) x C
= 9.5 + \(\frac{5(32 - 17)}{2(32) - 17 - 25}\)
= 9.5 + \(\frac{75}{27}\)
= 12.27
\(\approx\) 12.3
19
18
13
12
Correct answer is A
mean(x) = \(\frac{\sum x}{N}\)
= \(\frac{48}{8}\)
= 5.875
re-arranging the numbers;
2, 3, 5, 6, 2, 7, 8, 9
median = \(\frac{6 + 7}{2}\)
= \(\frac{1}{2}\)
= 6.5
m + 2n = 5.875 + (6.5)2
= 13 + 5.875
= 18.875
= \(\approx\) = 19
find the equation of the curve which passes through by 6x - 5
6x2 - 5x + 5
6x2 + 5x + 5
3x2 - 5x - 5
3x2 - 5x + 3
Correct answer is D
m = \(\frac{dy}{dv}\) = 6x - 5
∫dy = ∫(6x - 5)dx
y = 3x2 - 5x + C
when x = 2, y = 5
∴ 5 = 3(2)2 - 5(2) +C
C = 3
∴ y = 3x2 - 5x + 3