JAMB Mathematics Past Questions & Answers - Page 296

1,476.

If X \(\ast\) Y = X + Y - XY, find x when (x \(\ast\) 2) + (x \(\ast\) 3) = 68

A.

24

B.

22

C.

-12

D.

-21

Correct answer is D

x \(\ast\) y = x + y - xy

(x \(\ast\) 2) + (x \(\ast\) 3) = 68

= x + 2 - 2x + x + 3 - 3x

= 86

3x = 63

x = -21

1,477.

Two binary operations \(\ast\) and \(\oplus\) are defined as m \(\ast\) n = mn - n - 1 and m \(\oplus\) n = mn + n - 2 for all real numbers m, n.

Find the value of 3 \(\oplus\) (4 \(\ast\) 50)

A.

60

B.

57

C.

54

D.

42

Correct answer is C

m \(\ast\) n = mn - n - 1, m \(\oplus\) n = mn + n - 2

3 \(\oplus\) (4 \(\ast\) 5) = 3 \(\oplus\) (4 x 5 - 5 - 1) = 3 \(\oplus\) 14

3 \(\oplus\) 14 = 3 x 14 + 14 - 2

= 54

1,478.

The nth term of a sequence is given 31 - n , find the sum of the first terms of the sequence.

A.

\(\frac{13}{9}\)

B.

1

C.

\(\frac{1}{3}\)

D.

\(\frac{1}{9}\)

Correct answer is A

Tn = 31 - n

S3 = 31 - 1 + 31 - 2 + 31 - 3

= 1 + \(\frac{1}{3}\) + \(\frac{1}{9}\)

= \(\frac{13}{9}\)

1,479.

Sn is the sum of the first n terms of a series given by Sn = n\(^2\) - 1. Find the nth term

A.

4n + 1

B.

4n - 1

C.

2n + 1

D.

2n - 1

Correct answer is D

\(S_{n} = n^{2} - 1\)

\(T_{n} = S_{n} - S_{n - 1}\)

\(S_{n - 1} = (n - 1)^{2} - 1\)

= \(n^{2} - 2n + 1 - 1\)

= \(n^{2} - 2n\)

\(S_{n} - S_{n - 1} = (n^{2} - 1) - (n^{2} - 2n)\)

= \(2n - 1\)

1,480.

Find the range of values of x which satisfies the inequality 12x2 < x + 1

A.

-\(\frac{1}{4}\) < x < \(\frac{1}{3}\)

B.

\(\frac{1}{4}\) < x < -\(\frac{1}{3}\)

C.

-\(\frac{1}{3}\) < x < \(\frac{1}{4}\)

D.

-\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)

Correct answer is A

12x2 < x + 1

12 - x - 1 < 0

12x2 - 4x + 3x - 1 < 0

4x(3x - 1) + (3x - 1) < 0

Case 1 (+, -)

4x + 1 > 0, 3x - 1 < 0

x > -\(\frac{1}{4}\)x < \(\frac{1}{3}\)

Case 2 (-, +) 4x + 1 < 0, 3x - 1 > 0

-\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)