22cm2
44cm2
66cm2
88cm2
Correct answer is A
Area of a sector = \(\frac{\theta}{360°} \times \pi r^{2}\)
r = 6cm; \(\theta\) = 70°.
Area of the sector = \(\frac{70}{360} \times \frac{22}{7} \times 6^{2}\)
= \(22 cm^{2}\)
22cm
44cm
110cm
220cm
Correct answer is A
Diameter = 42cm
Length of the arc = \(\frac{\theta}{360°} \times \pi d\)
= \(\frac{60}{360} \times \frac{22}{7} \times 42cm\)
= \(22cm\)
128o
16o
64o
58o
Correct answer is A
Base angle of the triangle = 58°.
The third angle = 180° - (58° + 58°)
= 64°
Angle subtended at the centre = \(2 \times 64° = 128°\) (angle at the centre is twice the angle at the circumference).
2
4
√3
√2
1
Correct answer is A
x(x2 - 1) - x = 0
= x3 - 2x = 0
x(x2 - 2) = 0
x = 2
3
4
7
12
Correct answer is C
\(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\)
\(\begin{pmatrix} 2x - 3y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\)
\(2x - 3y = -1 ... (i)\)
\(-x + 4y = 8 ... (ii)\)
From (ii), x = 4y - 8.
\(2(4y - 8) - 3y = -1 \implies 8y - 16 - 3y = -1\)
\(5y = -1 + 16 = 15 \implies y = 3\)
\(x = 4(3) - 8 = 12 - 8 = 4\)
\(\therefore x + y = 3 + 4 = 7\)