Find the positive value of x if the standard deviation of the numbers 1, x + 1, 2x + 1 is 6

A.

1

B.

2

C.

3

D.

4

Correct answer is C

mean (x) = \(\frac{1 + x + 1 + 2x + 1}{3}\)

= \(\frac{3x + 3}{3}\)

= 1 + x

\(\begin{array}{c|c} X & (X -X) & (X -X)^2\\ \hline 1 & -x & x^2 \\ x + 1 & 0 & 0\\2x + 1 & x & x^2\\ \hline & & 2x^2\end{array}\)

S.D = \(\sqrt{\frac{\sum(x - 7)^2}{\sum f}}\)

= \(\sqrt{(6)}^2\)

= \(\frac{2x^2}{3}\)

= 2x2

= 18

x2 = 9

∴ x = \(\pm\) \(\sqrt{9}\)

= \(\pm\)3