JAMB Mathematics Past Questions & Answers - Page 282

1,406.

Find the values of p and q such that (x - 1)and (x - 3) are factors of px3 + qx2 + 11x - 6

A.

-1, -6

B.

1, -6

C.

1, 6

D.

6, -1

Correct answer is B

Since (x - 1), is a factor, when the polynomial is divided by (x - 1), the remainder = zero

\(\therefore (x - 1) = 0\)

x = 1

Substitute in the polynomial the value x = 1

= \(p(1)^3 + q(1)^2 + 11(1) - 6 = 0\)

p + q + 5 = 0 .....(i)

Also since x - 3 is a factor, \(\therefore\) x - 3 = 0

x = 3

Substitute \(p(3)^3 + q(3)^2 + 11(3) - 6 = 0\)

27p + 9q = -27 ......(2)

Combine eqns. (i) and (ii)

Multiply equation (i) by 9 to eliminate q

9p + 9q = -45

Subtract (ii) from (i), \(18p = 18\)

\(\therefore\) p = 1

Put p = 1 in (i), 

\(1 + q = -5 \implies q = -6\)

\((p, q) = (1, -6)\)

1,407.

Factorize a2x - b2y - b2x + a2y

A.

(a - b)(x + y)

B.

(y - x)(a - b)(a + b)

C.

(x - y)(a - b)(a + b)

D.

(x + y)(a - b)(a + b)

Correct answer is D

a2x - b2y - b2x + a2y = a2x - b2x - b2y + a2y Rearrange

= x(a2 - b2) + y(a2 - b2)

= (x + y)(a2 - b2)

= (x + y)(a + b)(a - b)

1,408.

Simplify \(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)

A.

\(\frac{3}{5}\)

B.

\(\frac{2}{5}\)

C.

\(\frac{2m - u}{5m + u}\)

D.

\(\frac{m - 2u}{m + 5u}\)

Correct answer is A

\(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)

= \(\frac{2m - u + m - 2u)(2m - u - m + 2u)}{5(m + u)(m - u)}\)

= \(\frac{3(m - u)(m + u)}{5(m + u)(m - u)}\)

= \(\frac{3}{5}\)

1,409.

Given that \(\sqrt{2} = 1.414\), find without using tables, the value of \(\frac{1}{\sqrt{2}}\)

A.

0.141

B.

0.301

C.

0.667

D.

0.707

Correct answer is D

\(\frac{1}{\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\) x \(\frac{\sqrt{2}}{\sqrt{2}}\)

= \(\frac{\sqrt{2}}{2}\)

= \(\frac{1.414}{2}\)

= 0.707

1,410.

Simplify \(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)

A.

5√3

B.

6√3

C.

8√3

D.

18√3

Correct answer is B

\(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)

Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)

= (√16 x √3) + (√25 x √3) - \(\frac{9}{\sqrt{3}}\)

=4√3 + 5√3 - \(\frac{9}{\sqrt{3}}\)

Rationalize \(\to\) 9√3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)

= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)

= 3√3