Simplify \(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)

A.

5√3

B.

6√3

C.

8√3

D.

18√3

Correct answer is B

\(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)

Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)

= (√16 x √3) + (√25 x √3) - \(\frac{9}{\sqrt{3}}\)

=4√3 + 5√3 - \(\frac{9}{\sqrt{3}}\)

Rationalize \(\to\) 9√3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)

= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)

= 3√3