JAMB Mathematics Past Questions & Answers - Page 277

1,381.

Find the mean deviation of the set of numbers 4, 5, 9

A.

zero

B.

2

C.

5

D.

6

Correct answer is B

x = \(\frac{\sum x}{N}\)

= \(\frac{18}{3}\)

= 6

\(\begin{array}{c|c} x & x - x & x - x \\ \hline 4 & -2 & 2\\ 5 & 1 & 1\\ 9 & 3 & 3\\ \hline & & 6\end{array}\)

M.D = \(\frac{|x - x|}{N}\)

= \(\frac{6}{3}\)

= 2

1,382.

\(\begin{array}{c|c} x & 1 & 2 & 3 & 4 & 5 \\ \hline f & y + 2 & y - 2 & 2y - 3 & y + 4 & 3y - 4\end{array}\)
This table shows the frequency distribution of a data if the mean is \(\frac{43}{14}\) find y

A.

1

B.

2

C.

3

D.

4

Correct answer is B

x 1 2 3 4 5 Total
f y + 2 y - 1 2y - 3 y + 4 3y - 4 8y - 2
fx y + 2 2y - 2 6y - 9 4y + 16 15y - 20 28y - 13

Mean = \(\frac{\sum fx}{\sum f}\)

\(\therefore \frac{28y - 13}{8y - 2} = \frac{43}{14}\)

\(\implies 14(28y - 13) = 43(8y - 2)\)

\(392y - 182 = 344y - 86\)

\(392y - 344y = -86 + 182 \implies 48y = 96\)

\(y = 2\)

1,383.

Evaluate \(\int^{1}_{-1}(2x + 1)^2 \mathrm d x\)

A.

3\(\frac{2}{3}\)

B.

4

C.

4\(\frac{1}{3}\)

D.

4\(\frac{2}{3}\)

Correct answer is D

\(\int^{1}_{-1}(2x + 1)^2 \mathrm d x\)

= \(\int^{1}_{-1}(4x^2 + 4x + 1) \mathrm d x\)

= \(\int^{1}_{-1}\)[\(\frac{4x^3}{3} + 2x^2 + x]\)

= [\(\frac{4}{3}\) + 2 + 1] - [\(\frac{-4}{3}\)+2 -1]



= \(\frac{13}{3}\) + \(\frac{1}{3}\)

= \(\frac{14}{3}\)

= \(4 \frac{2}{3}\)

1,384.

Integrate \(\frac{1 - x}{x^3}\) with respect to x

A.

\(\frac{x - x^2}{x^4}\) + k

B.

\(\frac{4}{x^4} - \frac{3 + k}{x^3}\)

C.

\(\frac{1}{x} - \frac{1}{2x^2}\) + k

D.

\(\frac{1}{3x^2} - \frac{1}{2x}\) + k

Correct answer is C

\(\int \frac{1 - x}{x^3}\)

= \(\int^{1}_{x^3} - \int^{x}_{x^3}\)

= x-3 dx - x-2dx

= \(\frac{1}{2x^2} + \frac{1}{x}\)

1,385.

Find the point (x, y) on the Euclidean plane where the curve y = 2x2 - 2x + 3 has 2 as gradient

A.

(1, 3)

B.

(2, 7)

C.

(0, 3)

D.

(3, 15)

Correct answer is A

Equation of curve;

y = 2x2 - 2x + 3

gradient of curve;

\(\frac{dy}{dx}\) = differential coefficient

\(\frac{dy}{dx}\) = 4x - 2, for gradient to be 2

∴ \(\frac{dy}{dx}\) = 2

4x - 2 = 2

4x = 4

∴ x = 1

When x = 1, y = 2(1)2 - 2(1) + 3

= 2 - 2 + 3

= 5 - 2

= 3

coordinate of the point where the curve; y = 2x2 - 2x + 3 has gradient equal to 2 is (1, 3)