3\(\frac{2}{3}\)
4
4\(\frac{1}{3}\)
4\(\frac{2}{3}\)
Correct answer is D
\(\int^{1}_{-1}(2x + 1)^2 \mathrm d x\)
= \(\int^{1}_{-1}(4x^2 + 4x + 1) \mathrm d x\)
= \(\int^{1}_{-1}\)[\(\frac{4x^3}{3} + 2x^2 + x]\)
= [\(\frac{4}{3}\) + 2 + 1] - [\(\frac{-4}{3}\)+2 -1]
= \(\frac{13}{3}\) + \(\frac{1}{3}\)
= \(\frac{14}{3}\)
= \(4 \frac{2}{3}\)
Evaluate: \(\frac{0.21 \times 0.072 \times 0.00054}{0.006 \times 1.68 \times 0.063}\) ...
Evaluate 1 - (\(\frac{1}{5}\) x \(\frac{2}{3}\)) + ( 5 + \(\frac{2}{3}\))...
PQRS is a cyclic quadrilateral. Find \(x\) + \(y\)...
Tanθ is positive and Sinθ is negative. In which quadrant does θ lies ...
Find the distance between the points C(2, 2) and D(5, 6)....
Simplify \(\frac{a - b}{a + b}\) - \(\frac{a + b}{a - b}\)...