JAMB Mathematics Past Questions & Answers - Page 267

1,331.

If U = (1, 2, 3, 6, 7, 8, 9, 10) is the universal set. E = (10, 4, 6, 8, 10) and F = {x: 1x\(^{2}\) = 2\(^{6}, x is odd}. Find (E ∩ F)', where ' means the complement of a set.

A.

(0)

B.

U

C.

(8)

D.

\(\phi\)

Correct answer is D

U = (1, 2, 3, 6, 7, 8, 9, 10)

E = (10, 4, 6, 8, 10)

F = (x : x\(^2\) = 2\(^6\), x is odd)

∴ F = \(\phi\) Since x\(^2\) = 2\(^6\) = 64

x = \(\pm 8\) which is even

∴ E ∩ F = \(\phi\) Since there are no common elements

1,332.

If x = (all prime factors of 44) and y = (all prime factors of 60), the elements of X ∪ Y and X ∩ Y respectively are

A.

(2, 4, 3, 5, 11) and (4)

B.

(4, 3, 5, 11) and (3, 4)

C.

(2, 5, 11) and (2)

D.

(2, 3, 5, 11) and (2)

Correct answer is D

x = (all prime factors of 44) and y = (all prime factors of 60)

∴ x = (2, 11), y = (2, 3, 5)

X ∪ Y = (2, 3, 5, 11),

X ∩ Y = (2)

1,333.

If x = 3 - \(\sqrt{3}\), find x2 + \(\frac{36}{x^2}\)

A.

9

B.

18

C.

24

D.

27

Correct answer is C

x = 3 - \(\sqrt{3}\)

x2 = (3 - \(\sqrt{3}\))2

= 9 + 3 - 6\(\sqrt{34}\)

= 12 - 6\(\sqrt{3}\)

= 6(2 - \(\sqrt{3}\))

∴ x2 + \(\frac{36}{x^2}\) = 6(2 - \(\sqrt{3}\)) + \(\frac{36}{6(2 - \sqrt{3})}\)

6(2 - \(\sqrt{3}\)) + \(\frac{6}{2 - \sqrt{3}}\) = 6(- \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}\)

= 6(2 - \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{4 - 3}\)

6(2 - \(\sqrt{3}\)) + 6(2 + \(\sqrt{3}\)) = 12 + 12

= 24

1,334.

Simplify 5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\)

A.

17\(\sqrt{4}\)

B.

4\(\sqrt{17}\)

C.

17\(\sqrt{2}\)

D.

12\(\sqrt{4}\)

Correct answer is C

5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\) = 5(3\(\sqrt{2}\)) - 3(6\(\sqrt{2}\)) + 4(5\(\sqrt{2}\))

15\(\sqrt{2}\) - 18\(\sqrt{2}\) + 20\(\sqrt{2}\) = 35\(\sqrt{2}\) - 18\(\sqrt{2}\)

= 17\(\sqrt{2}\)

1,335.

Simplify \(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\)

A.

4.0 x 10-3

B.

5.0 x 10-2

C.

2.0 x 10-1

D.

5.0 x 10-3

Correct answer is A

\(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\) = \(\frac{1.25 \times 2}{6.25}\) x 104 - 1 - 5

\(\frac{2.50}{6.25}\) x 10-2 = \(\frac{250}{625}\) x 10-2

0.4 x 10-2 = 4.0 x 10-3