(0)
U
(8)
\(\phi\)
Correct answer is D
U = (1, 2, 3, 6, 7, 8, 9, 10)
E = (10, 4, 6, 8, 10)
F = (x : x\(^2\) = 2\(^6\), x is odd)
∴ F = \(\phi\) Since x\(^2\) = 2\(^6\) = 64
x = \(\pm 8\) which is even
∴ E ∩ F = \(\phi\) Since there are no common elements
(2, 4, 3, 5, 11) and (4)
(4, 3, 5, 11) and (3, 4)
(2, 5, 11) and (2)
(2, 3, 5, 11) and (2)
Correct answer is D
x = (all prime factors of 44) and y = (all prime factors of 60)
∴ x = (2, 11), y = (2, 3, 5)
X ∪ Y = (2, 3, 5, 11),
X ∩ Y = (2)
If x = 3 - \(\sqrt{3}\), find x2 + \(\frac{36}{x^2}\)
9
18
24
27
Correct answer is C
x = 3 - \(\sqrt{3}\)
x2 = (3 - \(\sqrt{3}\))2
= 9 + 3 - 6\(\sqrt{34}\)
= 12 - 6\(\sqrt{3}\)
= 6(2 - \(\sqrt{3}\))
∴ x2 + \(\frac{36}{x^2}\) = 6(2 - \(\sqrt{3}\)) + \(\frac{36}{6(2 - \sqrt{3})}\)
6(2 - \(\sqrt{3}\)) + \(\frac{6}{2 - \sqrt{3}}\) = 6(- \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}\)
= 6(2 - \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{4 - 3}\)
6(2 - \(\sqrt{3}\)) + 6(2 + \(\sqrt{3}\)) = 12 + 12
= 24
Simplify 5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\)
17\(\sqrt{4}\)
4\(\sqrt{17}\)
17\(\sqrt{2}\)
12\(\sqrt{4}\)
Correct answer is C
5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\) = 5(3\(\sqrt{2}\)) - 3(6\(\sqrt{2}\)) + 4(5\(\sqrt{2}\))
15\(\sqrt{2}\) - 18\(\sqrt{2}\) + 20\(\sqrt{2}\) = 35\(\sqrt{2}\) - 18\(\sqrt{2}\)
= 17\(\sqrt{2}\)
Simplify \(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\)
4.0 x 10-3
5.0 x 10-2
2.0 x 10-1
5.0 x 10-3
Correct answer is A
\(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\) = \(\frac{1.25 \times 2}{6.25}\) x 104 - 1 - 5
\(\frac{2.50}{6.25}\) x 10-2 = \(\frac{250}{625}\) x 10-2
0.4 x 10-2 = 4.0 x 10-3