Evaluate xy2−x2yx2−xy1 When x = -2 and y = 3
3
-35
35
-3
Correct answer is D
xy2−x2yx2−xy1
= (−2)(3)2−(−2)2(3)(−2)2−(−2)(3)
= −3010
= -3
Multiply (x2 - 3x + 1) by (x - a)
x3 - (3 + a) x2 + (1 + 3a)x - a
x3 - (3 - a)x2 + 3ax - a
x3 - (3 - a)x2 - (1 = 3a) - a
x3 + (3 - a)x2 + (1 + 3a) - a
Correct answer is A
(x2 - 3x + 1)(x - a) = x3 - 3x2 + x - ax2 + 3ax - a
= x3 - (3 + a) x2 + (1 + 3a)x - a
5 - 2√6
5 + 2√6
5√6
5
Correct answer is B
2√3+3√23√2−2√3
= 2√3+3√23√2−2√3 x 3√2+2√33√2−2√3
4(3)+9(2)+2(6)√69(2)−4(3)
\frac{12 + 18 + 12\sqrt{6}}{1`8 - 12}
= \frac{30 + 12\sqrt{6}}{6}
= 5 + 2\sqrt{6}
Simplify \frac{1}{1 + \sqrt{5}} - \frac{1}{1 - \sqrt{5}}
- \frac{1}{2}\sqrt{5}
\frac{1}{2}\sqrt{5}
-- \frac{1}{4}\sqrt{5}
5
Correct answer is B
\frac{1}{1 + \sqrt{5}} - \frac{1}{1 - \sqrt{5}}
= \frac{1 - \sqrt{5} - 1 - \sqrt{5}}{(1 + \sqrt{5}) (1 - \sqrt{5}}
= \frac{-2\sqrt{5}}{1 - 5}
= \frac{-2\sqrt{5}}{- 4}
= \frac{1}{2}\sqrt{5}