Rationalize \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)

A.

5 - 2\(\sqrt{6}\)

B.

5 + 2\(\sqrt{6}\)

C.

5\(\sqrt{6}\)

D.

5

Correct answer is B

\(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)

= \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\) x \(\frac{3\sqrt{2} + 2 \sqrt{3}}{3\sqrt{2} - 2 \sqrt{3}}\)

\(\frac{4(3) + 9(2) + 2(6) \sqrt{6}}{9(2) - 4(3)}\)

\(\frac{12 + 18 + 12\sqrt{6}}{1`8 - 12}\)

= \(\frac{30 + 12\sqrt{6}}{6}\)

= 5 + 2\(\sqrt{6}\)