JAMB Mathematics Past Questions & Answers - Page 238

1,186.

PQRS is a rhombus. If PR\(^2\) + QS\(^2\) = kPQ\(^2\), determine k.

A.

1

B.

2

C.

3

D.

4

Correct answer is D

PR\(^2\) + QS\(^2\) = kPQ\(^2\)

SQ\(^2\) = SR\(^2\) + RQ\(^2\)

PR\(^2\) + SQ\(^2\) = PQ\(^2\) + SR\(^2\) + 2RQ\(^2\)

= 2PQ\(^2\) + 2RQ\(^2\)

= 4PQ\(^2\)

∴ K = 4

1,187.

A regular polygon of (2k + 1) sides has 140° as the size of each interior angle. Find k

A.

4

B.

4\(\frac{1}{2}\)

C.

8

D.

8\(\frac{1}{2}\)

Correct answer is A

A regular has all sides and all angles equal. If each interior angle is 140° each exterior angle must be

180° - 140° = 40°

The number of sides must be \(\frac{360^o}{40^o}\) = 9 sides

hence 2k + 1 = 9

2k = 9 - 1

8 = 2k

k = \(\frac{8}{2}\)

= 4

1,188.

If -8, m, n, 19 are in arithmetic progression, find (m, n)

A.

1, 10

B.

2, 10

C.

3, 13

D.

4, 16

Correct answer is A

-8, m, n, 19 = m + 8

= 19 - n

m + n = 11

i.e. 1, 10

1,189.

The sum of the first two terms of a geometric progression is x and sum of the last terms is y. If there are n terms in all, then the common ratio is

A.

\(\frac{x}{y}\)

B.

\(\frac{y}{x}\)

C.

(\(\frac{x}{y}\))\(\frac{1}{n - 2}\)

D.

(\(\frac{y}{x}\))\(\frac{1}{n - 2}\)

Correct answer is D

Sum of nth term of a G.P = Sn = \(\frac{ar^n - 1}{r - 1}\)

sum of the first two terms = \(\frac{ar^2 - 1}{r - 1}\)

x = a(r + 1)

sum of the last two terms = Sn - Sn - 2

= \(\frac{ar^n - 1}{r - 1}\) - \(\frac{(ar^{n - 1})}{r - 1}\)

= \(\frac{a(r^n - 1 - r^{n - 2} + 1)}{r - 1}\) (r2 - 1)

∴ \(\frac{ar^{n - 2}(r + 1)(r - 1)}{1}\)= arn - 2(r + 1) = y

= a(r + 1)r^n - 2

y = xrn - 2

= yrn - 2

\(\frac{y}{x}\) = r = (\(\frac{y}{x}\))\(\frac{1}{n - 2}\)

1,190.

Simplify \(\frac{x(x + 1)^{\frac{1}{2}} - (x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}}\)

A.

\(\frac{-1}{x + 1}\)

B.

\(\frac{1}{x + 1}\)

C.

\(\frac{1}{x}\)

D.

\(\frac{1}{x - 1}\)

Correct answer is A

\(\frac{x}{(x + 1)}\) - \(\frac{\sqrt{(x + 1)}}{\sqrt(x + 1)}\)

= \(\frac{x}{x + 1}\) - 1

\(\frac{x - x - 1}{x + 1}\) = \(\frac{-1}{x + 1}\)