\(\frac{9}{10} \frac{4}{5} \frac{3}{4} \frac{17}{20}\)
\(\frac{4}{5} \frac{9}{10} \frac{3}{4} \frac{17}{20}\)
\(\frac{9}{10} \frac{17}{20} \frac{4}{5} \frac{3}{4}\)
\(\frac{4}{5} \frac{9}{10} \frac{17}{20} \frac{3}{4}\)
Correct answer is C
\(\frac{9}{10} \frac{4}{5} \frac{3}{4} \frac{17}{20}\) = \(\frac{18, 16, 15, 17}{20}\)
\(\frac{4}{5} \frac{9}{10} \frac{3}{4} \frac{17}{20}\) = \(\frac{16, 18, 15, 17}{20}\)
\(\frac{9}{10} \frac{17}{20} \frac{4}{5} \frac{3}{4}\) = \(\frac{18, 17, 16, 15}{20}\)
∴ \(\frac{9}{10}; \frac{17}{20}; \frac{4}{5}; \frac{3}{4}\) is in descending order.
In the figure, find x in terms of a, b and c. ...
p = \(\begin{vmatrix} x & 3 & 0 \\ 2 & y & 3\\ 4 & 2 & 4 \end{vmatrix}\) Q = \(\begin{vmatrix} x ...
Integrate \(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)...
Factorize the expression 2y\(^2\) + xy - 3x\(^2\)...
Simplify \(\left(\frac{16}{81}\right)^{-\frac{3}{4}}\times \sqrt{\frac{100}{81}}\)...
If 3p = 4q and 9p = 8q - 12, find the value of pq. ...
If 4y is 9 greater than the sum of y and 3x, by how much is y greater than x? ...
Find the sum of the first 18 terms of the series 3, 6, 9,..., 36. ...