JAMB Mathematics Past Questions & Answers - Page 223

1,111.

The minimum value of y in the equation y = x\(^2\) - 6x + 8 is

A.

8

B.

3

C.

7

D.

-1

Correct answer is D

y = x\(^2\) - 6x + 8

\(\frac{dy}{dx}\) = 2x - 6

\(\frac{dy}{dx}\) = 0

2x - 6 = 0

x = 3

\(\therefore\) y = 3\(^2\) - 6(3) + 8

= 9 - 18 + 8

= -1

1,112.

Simplify \(\frac{x^2 - y^2}{2x^2 + xy - y^2}\)

A.

\(\frac{x + y}{2x + y}\)

B.

\(\frac{x + y}{2x - y}\)

C.

\(\frac{x - y}{2x - y}\)

D.

\(\frac{x - y}{2x + y}\)

Correct answer is C

\(\frac{x^{2} - y^{2}}{2x^{2} + xy - y^{2}}\)

\(2x^{2} + xy - y^{2} = 2x^{2} - xy + 2xy - y^{2}\)

= \(x(2x - y) + y(2x - y) \)

= \((x + y)(2x - y)\)

\(\frac{x^{2} - y^{2}}{2x^{2} + xy - y^{2}} = \frac{(x + y)(x - y)}{(x + y)(2x - y)}\)

= \(\frac{x - y}{2x - y}\)

1,113.

Solve the inequality x - 1 > 4(x + 2)

A.

x > -3

B.

x < -3

C.

2 < x < 3

D.

-3 < x < -2

Correct answer is B

x - 1 > 4(x + 2) = x - 1 > 4x + 8 4x + 8 < x - 1 = 4x - x < -1 -8 = 3x < -9 ∴ x < -3

1,114.

An (n - 2)2 sided figure has n diagonals. Find the number n diagonals for 25-sided figure

A.

7

B.

8

C.

9

D.

10

Correct answer is A

(n - 2)2 = 25

n - 2 = 25 = 5

n = 5 + 2

= 7

1,115.

Find the values of y which satisfy the simultaneous equations x + y = 5, x2 - 2y2 = 1

A.

-12, -2

B.

-12, 12

C.

-12, +2

D.

2, -2

Correct answer is C

x + y = 5.......(i) x2 - 2y2 = 1.......(ii) x = 5 - y.........(iii) Subst. for x in eqn.(ii) = (5 - y)2 - 2y2 = 1 25- 10y + y2 - 2y2 = 1 25 - 1 = y2 + 10y y2 + 10y2 - 24 = 0 (y + 12)(y - 2) = 0 Then Either y + 12 = 0 or y - 2 = 0 = (-12, +2)