Simplify \(\frac{x^2 - y^2}{2x^2 + xy - y^2}\)

A.

\(\frac{x + y}{2x + y}\)

B.

\(\frac{x + y}{2x - y}\)

C.

\(\frac{x - y}{2x - y}\)

D.

\(\frac{x - y}{2x + y}\)

Correct answer is C

\(\frac{x^{2} - y^{2}}{2x^{2} + xy - y^{2}}\)

\(2x^{2} + xy - y^{2} = 2x^{2} - xy + 2xy - y^{2}\)

= \(x(2x - y) + y(2x - y) \)

= \((x + y)(2x - y)\)

\(\frac{x^{2} - y^{2}}{2x^{2} + xy - y^{2}} = \frac{(x + y)(x - y)}{(x + y)(2x - y)}\)

= \(\frac{x - y}{2x - y}\)