JAMB Mathematics Past Questions & Answers - Page 217

1,081.

Simplify \(\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{3^{-\frac{1}{6}} \times 3^{\frac{-2}{3}}}\)

A.

\(\frac{1}{3}\)

B.

1

C.

3

D.

9

Correct answer is B

\(\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{3^{-\frac{1}{6}} \times 3^{-\frac{2}{3}}}\) = \(\frac{(3^2)^{\frac{1}{2}} \times (3^3)^{-\frac{1}{3}}}{3^{-\frac{1}{6}} \times 3^{-\frac{2}{3}}}\)

= \(\frac{3^{\frac{2}{3}} \times 3^{-\frac{3}{2}}}{3^{-\frac{1}{6}} \times 3^{-\frac{2}{3}}}\)

= \(\frac{3^{-\frac{5}{6}}}{3^{-\frac{5}{6}}}\)

= 1

1,082.

Find n if log\(_{2}\) 4 + log\(_{2}\) 7 - log\(_{2}\) n = 1

A.

10

B.

14

C.

27

D.

28

Correct answer is B

log\(_2\) 4 + log\(_2\) 7 - log\(_2\) n = 1

= log\(_2\) (4 x 7) - log\(_2\) n = 1

\(\therefore\) log\(_2\) 28 - log\(_2\) n = 1

= \(\frac{28}{n} = 2^1\)

\(\frac{28}{n}\) = 2

2n = 28

∴ n = 14

1,083.

Simplify \((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)

A.

\(\frac{\sqrt{3}}{\sqrt{5}}\)

B.

\(\frac{2 \sqrt{3}}{7}\)

C.

-2

D.

-1

Correct answer is D

\((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)

\(\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}\)

\(\frac{(\sqrt{5} - \sqrt{3}) - (\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}\)

= \(\frac{\sqrt{5} - \sqrt{3} - \sqrt{5} - \sqrt{3}}{5 - \sqrt{15} + \sqrt{15} - 3}\)

= \(\frac{-2\sqrt{3}}{2}\)

= \(- \sqrt{3}\)

\(\therefore (\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}} = - \sqrt{3} \times \frac{1}{\sqrt{3}}\)

= \(-1\)

1,084.

In 1984, Ike was 24 yrs old and his father was 45 yrs old. In what year was Ike exactly half his father's age?

A.

1981

B.

1979

C.

1982

D.

1978

Correct answer is A

Let the no. of years be y

24 - y = \(\frac{1}{2}\)(45 - y)

45 - y = 2(24 - y)

45 - y = 48 - 2y

2y - y = 48 - 45

∴ y = 3

The exact year = 1984

1984 - 3 = 1981

1,085.

The ages of Tosan and Isa differ by 6 and the product of their ages is 187. Write their ages in the form (x, y), where x > y.

A.

(12, 6)

B.

(23, 17)

C.

(17, 11)

D.

(18, 12)

Correct answer is C

x - y = 6.......(i)

xy = 187.......(ii)

From equation (i), x(6 + y)

sub. for x in equation (ii) = y(6 + y)

= 187

y2 + 6y = 187

y2 + 6y - 187 = 0

(y + 17)(y - 11) = 0

y = -17 or y = 11

y cannot be negative, y = 11

Sub. for y in equation(i) = x - 11

= 16

x = 6 + 11

= 17

∴(x, y) = (17, 11)