The sine, cosine and tangent of 210o are respectively
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{2}\)
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{3}\)
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{2}\)
\(\frac{-1}{2}\), \(\frac{\sqrt{-3}}{2}\), \(\frac{\sqrt{3}}{3}\)
Correct answer is D
210o = 180o - 210o = - 30o
From ratio of sides, sin -30o = -\(\frac{1}{2}\)
Cos 210o = 180o - 210o = -30o
= cos -30o = \(\frac{-3}{2}\)
But tan 30o = \(\frac{1}{\sqrt{3}}\), rationalizing this
= \(\frac{1}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\) = \(\frac{\sqrt{3}}{3}\)
∴ = \(\frac{-1}{2}\), \(\frac{\sqrt{-3}}{2}\), \(\frac{\sqrt{3}}{3}\)