Use the graph of sin (θ) above to estimate the value of θ when sin (θ) = -0.6 for 0^o ≤ θ ≤ 360^o
θ = 223^o, 305^o
θ = 210^o, 330^o
θ = 185^o, 345^o
θ = 218^o, 323^o
Correct answer is D
On the y-axis, each box is \frac{1 - 0}{5} = \frac{1}{5} = 0.2unit
On the x-axis, each box is \frac{90 - 0}{6} = \frac{90}{6} = 15^o
⇒ θ_1 = 180^o + (2.5\times15^o) = 180^o + 37.5^o = 217.5^o ≃ 218^o (2 and half boxes were counted to the right of 180^o)
⇒ θ_2 = 270^o + (3.5\times15^o) = 270^o + 52.5^o = 322.5^o ≃ 323^o (3 and half boxes were counted to the right of 270^o)
∴ θ = 218^o, 323^o
62 km
97 km
389 km
931 km
Correct answer is A
AB = \frac{θ}{360}\times 2\pi Rcos\propto (distance on small circle)
= 64 - 56 = 8^o
\propto = 86^o
⇒ AB = \frac{8}{360} x 2 x 3.142 x 6370 x cos 86
⇒ AB = \frac{22,338.29974}{360}
∴ AB = 62km (to the nearest km)
The perimeter of an isosceles right-angled triangle is 2 meters. Find the length of its longer side.
2 - \sqrt2
-4 + 3\sqrt2
It cannot be determined
-2 + 2\sqrt2 m
Correct answer is D
Perimeter of a triangle = sum of all sides
⇒ P = y + x + x = 2
⇒ y + 2x = 2
⇒ y= 2 - 2x-----(i)
Using Pythagoras theorem
y^2 = x^2 + x^2
⇒ y^2 = 2x^2
⇒ y = \sqrt2x^2
⇒ y = x\sqrt2-----(ii)
Equate y
⇒ 2 - 2x = x\sqrt2
Square both sides
⇒ (2 -2x) ^2 = (x\sqrt2)^2
⇒ 4 - 8x + 4x^2 = 2x^2
⇒ 4 - 8x + 4x^2 - 2x^2 = 0
⇒ 2x^2 - 8x + 4 = 0
⇒ x = \frac{-(-8)\pm\sqrt(-8)^2 - 4\times2\times4}{2\times2}
⇒ x = \frac{8\pm\sqrt32}{4}
⇒ x = \frac{8\pm4\sqrt2}{4}
⇒ x = 2\pm\sqrt2
⇒ x = 2 + \sqrt2 or 2 - \sqrt2
∴ x = 2 - \sqrt2 (for x has to be less than its perimeter)
∴ y = 2 - 2x = 2 - 2(2 - \sqrt2) = -2 + 2 \sqrt2
∴ The length of the longer side = -2 + 2\sqrt2m
270 km
200 km
360 km
450 km
Correct answer is B
Speed = \frac{Distance}{Time}
⇒ Time = \frac{Distance}{Time}
Let D = distance between the two airports
∴ Time taken to get to the airport = \frac{D}{120} and Time taken to return = \frac{D}{150}
Since total time of flight= 3hours,
⇒ \frac{D}{120} + \frac{D}{150} = 3
⇒ \frac{15D + 12D}{1800} = 3
⇒ \frac{27D}{1800} = 3
⇒ \frac{3D}{200} = \frac{3}{1}
⇒ 3D = 200 x 3
∴ D =\frac{ 200\times3}{3}= 200km