Loading [MathJax]/jax/output/HTML-CSS/jax.js

JAMB Mathematics Past Questions & Answers - Page 193

961.

If pq + 1 = q2 and t = 1p - 1pq express t in terms of q

A.

1pq

B.

1q1

C.

1q+1

D.

1 + 0

E.

11q

Correct answer is C

Pq + 1 = q2......(i)

t = 1p - 1pq.........(ii)

p = q21q

Sub for p in equation (ii)

t = 1q21q - 1q21q×q

t = qq21 - 1q21

t = q1q21

= q1(q+1)(q1)

= 1q+1

962.

Simplify (1 + x111x+1)(x + 2)

A.

(x2 - 1)(x + 2)

B.

x2(x + 2)

C.

2 + 34

D.

3x21(x1)

Correct answer is B

(1+x11x+1)(x+2)

(x1)÷1x+1=(x1)(x+1)=x21

(1+x21)(x+2)=x2(x+2)

963.

If a = 2x1x and b = 1+x1x, then a2 - b2 in the simplest form is

A.

3x+1x1

B.

3x21(x1)2

C.

x3x21x

D.

3x21(x1)

Correct answer is A

a2 - b2 = (2x1x)2 - (1+x1x)2

= (2x1x+1+x1x)(2x1x1+x1X)

= (3x+11x)(x11x)

= 3x+1x1

964.

The sides of a triangle are(x + 4)cm, xcm and (x - 4)cm, respectively If the cosine of the largest angle is 15, find the value of x

A.

24cm

B.

20cm

C.

28cm

D.

7cm

E.

887

Correct answer is A

< B is the largest since the side facing it is the largest, i.e. (x + 4)cm

Cosine B = 15

= 0.2 given

b2 - a2 + c2 - 2a Cos B

Cos B = a2+c2b22ac

15 = x2+?(x4)2(x+4)22x(x4)

15= x(x16)2x(x4)

15 = x162x8

= 5(x - 16)

= 2x - 8

3x = 72

x = 723

= 24

965.

A cone is formed by bending a sector of a circle having an angle of 210o. Find the radius of the base of the cone if the diameter of the circle is 12cm.

A.

12cm

B.

7.00cm

C.

1.75cm

D.

21cm

E.

3.50cm

Correct answer is E

If diameter of the circle = 12cm; radius of the circle(L) = 122

= 6cm

θ360 = rL where θ = 210θ, L = 6cm

210360 = r6

where r = radius of the base of the cone

V = 1260360

= 3.50cm