Rationalize the denominator of the expression \(\frac{6 + 2\sqrt{5}}{4 - 3\sqrt{6}}\)
\(\frac{12+ 4\sqrt{5 + 7} 5 + 6\sqrt{3}}{39}\)
\(\frac{-(24 + 18\sqrt{6} + 8\sqrt{5} + 6\sqrt{30})}{38}\)
\(\frac{24 + 3\sqrt{6 + 8} 5 + 6\sqrt{30}}{19}\)
\(\frac{-15 + 3\sqrt{5 + 18} 5 + 6\sqrt{30}}{36}\)
\(\frac{-(12 + 4\sqrt{5} +9\sqrt{6} + 3\sqrt{30})}{19}\)
Correct answer is B
Rationalize using the reciprocal of the denominator to multiply through
(i.e. Multiply both numerator and denominator using \(4 + 3\sqrt{6}\) )
Watch your signs in the course of this.
20sq.cm
100sq.cm
25sq.cm
16sq.cm
36sq.cm
Correct answer is C
Area of a square = 4(5) where S is each sides of the square
Perimeter = 20(given)
4S = 20
S = \(\frac{20}{4}\)
= 5
Area s2 = 52
= 25
Multiply (3x + 5y + 4z) by (2x - 3y + z)
6x2 + xy - 15y2 + 4z2 + 11xz - 7yz
6x2 + 3xy - 15y2 + 4z2
6x2 + 3xy - y2 + 4z2
6x2 + 3xy - 15y + z2
Correct answer is A
(3x + 5y + 4z)(2x - 3y + z)
6x2 + 9xy + 3x2 + 10xy - 15y2 + 5yz + 8xz - 12yz + 4z2
= 6x2 + xy - 15y2 + 4z2 + 11xz - 7yz
\(\frac{y(y - x)}{y - x}\) cedis
\(\frac{Yy - Xx)}{y - x}\) cedis
\(\frac{Y - Xy)}{y - x}\) cedis
\(\frac{Y - X}{y - x}\) cedis
\(\frac{Y - Xx}{y - x}\) cedis
Correct answer is E
The amount he has to spend per day for the rest of his stay is \(\frac{Y - Xx}{y - x}\) cedis
The solution of the equation x2 - 2x = 8 is
x = 0 or 2
x = -2 or 4
x = 2
x = -4
x = 2 or 4
Correct answer is B
x2 - 2x = 8 = 8
x2 - 2x - 8 = 0
(x2 - 4x) + (2x - 8) = 0
When x + 2 = 0
x = -2, when x - 4 = 0
x = 4
-2 or 4