Simplify the given expression \(\sqrt{\frac{1 - cos x}{1 + cos x}}\)

A.

\(\frac{1 - cos x}{sin x}\)

B.

1 - cos x

C.

sin x

D.

1 + cos x

E.

\(\frac{1 + cos x}{sin x}\)

Correct answer is A

\(\sqrt{\frac{1 - cos x}{1 + cos x}}\) = a

a2 = \(\frac{1 - cosx}{1 + cosx}\)

\(\frac{1 - cosx}{1 + cosx}\) = \(\frac{1 - cosx}{1 - cosx}\)

= \(\frac{(1 - cosx)^2}{cos^2 x}\)

a2 = \(\frac{(1 - cos x)^2}{sin^2 x}\)

a = \(\frac{1 - cos x}{sin x}\)